Giải Toán 10 trang 34 Tập 1 | Kết nối tri thức Giải Toán lớp 10

Với giải bài tập Toán lớp 10 trang 34 Tập 1 trong Bài 5: Giá trị lượng giác của một góc từ 0 độ đến 180 độ sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 34 Tập 1.

1 333 03/06/2023


Giải Toán 10 trang 34 Tập 1

HĐ 1 trang 34 Toán 10 Tập 1:

a) Nêu nhận xét về vị trí của điểm M trên nửa đường tròn đơn vị trong mỗi trường hợp sau:

• α = 90o;

• α < 90o;

• α > 90o.

b) Khi 0o < α < 90o, nêu mối quan hệ giữa cos α, sin α với hoành độ và tung độ của điểm M.

Lời giải:

a) Gọi điểm A có tọa độ A(1; 0).

Nêu nhận xét về vị trí của điểm M trên nửa đường tròn đơn vị trong mỗi trường hợp (ảnh 1)

• α = 90o hay AOM^=90o. Khi đó, điểm M có tọa độ M(0;1).

Nêu nhận xét về vị trí của điểm M trên nửa đường tròn đơn vị trong mỗi trường hợp (ảnh 1)

• α < 90o hay AOM^<90o.

Do đó, điểm M(x0; y0) nằm trên cung tròn AC (không tính điểm C) thỏa mãn < x0 ≤ 1, 0 ≤ y0 < 1.

Nêu nhận xét về vị trí của điểm M trên nửa đường tròn đơn vị trong mỗi trường hợp (ảnh 1)

• α > 90o hay AOM^<90o

Do đó, điểm M(x0; y0) nằm trên cung tròn BC (không tính điểm C) thỏa mãn −1 ≤ x0 < 0, 0 ≤ y0 < 1.

b) Khi 0o < α < 90

Kẻ MH ^ Ox, MK ^ Oy (H Î Ox, H Î Oy). Khi đó MOH^=α.

Nêu nhận xét về vị trí của điểm M trên nửa đường tròn đơn vị trong mỗi trường hợp (ảnh 1)

Gọi điểm M có tọa độ M(x0; y0).

Xét tứ giác MKOH có:

HOK^=90o (Ox ^ Oy)

MHO^=90o (MH ^ Ox)

MKO^=90o (MK ^ Oy)

Do đó tứ giác MKOH là hình chữ nhật.

Suy ra OH = |x0| = x0; MH = OK = |y0| = y0.

Ta có OM = 1 (bán kính đường tròn đơn vị).

Xét ∆MHO vuông tại H, ta có:

sinα=MHOM=y01=y0

Hay sin α = y0.

Ta lại có: cosα=OHOM=x01=x0.

Hay cos α = x0.

Vậy cos α là hoành độ của điểm M và sin α là tung độ của điểm M.

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác: 

Giải Toán 10 trang 35 Tập 1

Giải Toán 10 trang 36 Tập 1

Giải Toán 10 trang 37 Tập 1

1 333 03/06/2023


Xem thêm các chương trình khác: