Giải Toán 10 trang 27 Tập 2 | Kết nối tri thức Giải Toán lớp 10
Với giải bài tập Toán lớp 10 trang 27 Tập 2 trong Bài 18: Phương trình quy về phương trình bậc hai sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 27 Tập 2.
Giải Toán 10 trang 27 Tập 2
Bài 6.20 trang 27 Toán 10 Tập 2: Giải các phương trình sau:
Lời giải
a)
Bình phương hai vế của phương trình ta được:
3x2– 4x – 1 = 2x2 – 4x + 3
⇔ x2 – 4 = 0
⇔ x2 = 4
⇔ x = 2 hoặc x = – 2.
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả hai giá trị x = 2 và x = – 2 thỏa mãn.
Vậy tập nghiệm của phương trình là S = {– 2; 2}.
b)
Bình phương hai vế của phương trình ta được:
x2+ 2x – 3 = – 2x2 + 5
⇔ 3x2 + 2x – 8 = 0
⇔ x = – 2 hoặc x = .
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy chỉ có giá trị x = thỏa mãn.
Vậy tập nghiệm của phương trình là S = .
c)
Bình phương hai vế của phương trình ta được:
2x2 + 3x – 3 = – x2 – x + 1
⇔ 3x2 + 4x – 4 = 0
⇔ x = – 2 hoặc x = .
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả hai giá trị đều không thỏa mãn.
Vậy phương trình vô nghiệm.
d)
Bình phương hai vế của phương trình ta được:
– x2 + 5x – 4 = – 2x2 + 4x + 2
⇔ x2 + x – 6 = 0
⇔ x = – 3 hoặc x = 2.
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x = 2 thỏa mãn.
Vậy tập nghiệm của phương trình là S = {2}.
Bài 6.21 trang 27 Toán 10 Tập 2: Giải các phương trình sau:
Lời giải
a)
Bình phương hai vế của phương trình ta được
6x2 + 13x + 13 = 4x2 + 16x + 16
⇔ 2x2 – 3x – 3 = 0
⇔ x = hoặc x = .
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả hai giá trị x = và x = đều thỏa mãn.
Vậy tập nghiệm của phương trình là S = .
b)
Bình phương hai vế của phương trình ta được
2x2 + 5x + 3 = 9 + 6x + x2
⇔ x2 – x – 6 = 0
⇔ x = – 2 hoặc x = 3.
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy không có giá trị nào thỏa mãn.
Vậy phương trình vô nghiệm.
c)
Bình phương hai vế của phương trình ta được
3x2– 17x + 23 = x2 – 6x + 9
⇔ 2x2 – 11x + 14 = 0
⇔ x = 2 hoặc x = .
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x = thỏa mãn.
Vậy nghiệm của phương trình là S = .
d)
Bình phương hai vế của phương trình ta được
– x2 + 2x + 4 = x2 – 4x + 4
⇔ – 2x2 + 6x = 0
⇔ – 2x(x – 3) = 0
⇔ x = 0 hoặc x = 3.
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x = 3 thỏa mãn.
Vậy nghiệm của phương trình là S = {3}.
Bài 6.22 trang 27 Toán 10 Tập 2: Cho tứ giác ABCD có AB ⊥ CD; AB = 2; BC = 13; CD = 8; DA = 5 (H.6.21). Gọi H là giao điểm của AB và CD và đặt x = AH. Hãy thiết lập một phương trình để tính độ dài x, từ đó tính diện tích tứ giác ABCD.
Lời giải
Đặt AH = x, x > 0.
Khi đó theo định lí Pythagore trong tam giác AHD vuông tại H, ta có:
AD2= AH2 + HD2 ⇔ HD2 = AD2 – AH2 = 52 – x2 = 25 – x2.
Suy ra HD = .
Ta lại có HC = HD + DC = .
HB = AH + AB = x + 2
Theo định lí Pythagore trong tam giác HBC vuông tại H, ta có: BC2 = HB2 + HC2
⇔ 132 = (x + 2)2 +
⇔ x2 + 4x + 4 + 25 – x2 + 16+ 64 – 169 = 0
⇔ 16 = – 4x + 76
⇔ 4 = 19 – x
Để tính x, ta cần giải phương trình: 4 = 19 – x (*).
Bình phương hai vế của phương trình (*) ta được:
16.(25 – x2) = x2 – 38x + 361
⇔ 17x2 – 38x – 39 = 0
⇔ x = 3 hoặc x = .
Thay lần lượt các giá trị trên vào phương trình (*), ta thấy hai giá trị x = 3 và x = đều thỏa mãn.
Vì điều kiện của x là x > 0 nên ta chọn x = 3.
Vậy ta tính được AH = 3.
Suy ra HD = ; HC = 4 + 8 = 12; HB = 3 + 2 = 5
Diện tích tam giác HAD là SHAD = HA . HD = . 3 . 4 = 6.
Diện tích tam giác HBC là SHBC = HB . HC = . 5 . 12 = 30.
Vậy diện tích tứ giác ABCD là S = SHBC – SHAD = 30 – 6 = 24 (đvdt).
Bài 6.23 trang 27 Toán 10 Tập 2: Hằng ngày bạn Hùng đều đón bạn Minh đi học tại một vị trí trên lề đường thẳng đến trường. Minh đứng tại vị trí A cách lề đường một khoảng 50 m để chờ Hùng. Khi nhìn thấy Hùng đạp xe đến địa điểm B, cách mình một đoạn 200 m thì Minh bắt đầu đi bộ ra lề đường để bắt kịp xe. Vận tốc đi bộ của Minh là 5 km/h, vận tốc xe đạp của Hùng là 15 km/h. Hãy xác định vị trí C trên lề đường (H.6.22) để hai bạn gặp nhau mà không bạn nào phải chờ người kia (làm tròn kết quả đến hàng phần mười).
Lời giải
Đổi: 200 m = 0,2 km, 50 m = 0,05 km.
Ta mô hình hóa bài toán như trong hình vẽ sau:
Hùng ở vị trí B, Minh ở vị trí A, H là vị trí lề đường mà Minh đi theo hướng vuông góc với BC từ vị trí A.
Giả sử C là vị trí Hùng và Minh gặp nhau. Đặt CH = x (km) (x > 0).
Áp dụng định lí Pythagore tam giác HAB vuông tại H, ta có:
AB2 = HB2 + HA2 ⇔ HB2 = AB2 – HA2 = (0,2)2 – (0,05)2 = 0,0375
Suy ra HB = .
Ta có: BC + CH = HB ⇔ BC = HB – CH = .
Do đó quãng đường di chuyển của Hùng từ B đến điểm gặp nhau C dài (km).
Vận tốc đạp xe của Hùng là 15 km/h nên thời gian di chuyển của Hùng từ B đến điểm gặp nhau là: (giờ).
Áp dụng định lí Pythagore trong tam giác CHA vuông tại H, ta có:
CA2= HA2 + HC2 = (0,05)2 + x2 = 0,0025 + x2
Suy ra CA = hay quãng đường di chuyển của Minh từ vị trí A đến điểm gặp nhau C dài (km).
Vận tốc đi bộ của Minh là 5 km/h nên thời gian di chuyển của Minh từ vị trí A đến điểm gặp nhau C là: (giờ).
Để hai bạn gặp nhau mà không bạn nào phải chờ người kia thì thời gian di chuyển từ vị trí A đến C của Minh phải bằng thời gian di chuyển từ vị trí B đến C của Hùng.
Khi đó ta có phương trình: (*).
Giải phương trình (*) ta có:
(*)
Bình phương hai vế của phương trình trên ta được:
3600.(0,0025 + x2) = 15 – 40x + 400x2
⇔ 3200x2 + 40x – 6 = 0
⇔ x = hoặc x = .
Thay lần lượt các giá trị này vào phương trình (*) ta thấy cả hai giá trị đều thỏa mãn.
Lại có điều kiện của x là x > 0 nên ta chọn x = ≈ 0,0254.
Suy ra CH = x ≈ 0,0254 km = 25,4 m.
Do đó, BC = BH – CH ≈ km = 168,2 m.
Vậy vị trí C thỏa mãn yêu cầu đề bài là điểm cách H một khoảng 25,4 m hay C cách B một khoảng 168,2 m.
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Bài 19: Phương trình đường thẳng
Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách.
Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách.
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Soạn văn lớp 10 (ngắn nhất) – Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn lớp 10 - KNTT
- Bố cục tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Văn mẫu lớp 10 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 10 – Kết nối tri thức
- Giải sgk Tiếng Anh 10 Global Success – Kết nối tri thức
- Giải sbt Tiếng Anh 10 Global Success – Kết nối tri thức
- Ngữ pháp Tiếng Anh 10 Global success
- Bài tập Tiếng Anh 10 Global success theo Unit có đáp án
- Trọn bộ Từ vựng Tiếng Anh 10 Global success đầy đủ nhất
- Giải sgk Vật lí 10 – Kết nối tri thức
- Giải sbt Vật lí 10 – Kết nối tri thức
- Giải Chuyên đề Vật lí 10 – Kết nối tri thức
- Lý thuyết Vật lí 10 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 10 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 10 – Kết nối tri thức
- Lý thuyết Hóa học 10 – Kết nối tri thức
- Giải sbt Hóa học 10 – Kết nối tri thức
- Giải Chuyên đề Hóa học 10 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 10 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 10 – Kết nối tri thức
- Giải sbt Sinh học 10 – Kết nối tri thức
- Lý thuyết Sinh học 10 – Kết nối tri thức
- Giải Chuyên đề Sinh học 10 – Kết nối tri thức
- Giải sgk Lịch sử 10 – Kết nối tri thức
- Giải sbt Lịch sử 10 – Kết nối tri thức
- Giải Chuyên đề Lịch sử 10 – Kết nối tri thức
- Lý thuyết Lịch sử 10 - Kết nối tri thức
- Giải sgk Địa lí 10 – Kết nối tri thức
- Lý thuyết Địa Lí 10 – Kết nối tri thức
- Giải sbt Địa lí 10 – Kết nối tri thức
- Giải Chuyên đề Địa lí 10 – Kết nối tri thức
- Giải sgk Công nghệ 10 – Kết nối tri thức
- Lý thuyết Công nghệ 10 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải Chuyên đề Kinh tế và pháp luật 10 – Kết nối tri thức
- Lý thuyết KTPL 10 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sbt Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sgk Tin học 10 – Kết nối tri thức
- Lý thuyết Tin học 10 – Kết nối tri thức
- Giải sbt Tin học 10 – Kết nối tri thức
- Giải Chuyên đề Tin học 10 – Kết nối tri thức
- Giải sgk Giáo dục thể chất 10 – Kết nối tri thức