Giải SBT Toán 6 Bài 16 (Kết nối tri thức): Phép nhân số nguyên

Lời giải sách bài tập Toán lớp 6 Bài 16: Phép nhân số nguyên sách Kết nối tri thức với cuộc sống hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong sách bài tập Toán 6. 

1 1,016 04/11/2022
Tải về


Giải SBT Toán 6 Bài 16: Phép nhân số nguyên

Bài 3.26 trang 56 sách bài tập Toán 6 Tập 1 - KNTT: Tính tích 115. 8. Từ đó suy ra các tích sau:

a) (- 115). 8;                          

b) 115. (-8);                             

c) (-115). (-8)

Lời giải.

Ta có: 115. 8 = 920

a) (-115). 8 = - (115. 8) = -920

b) 115. (-8) = - (115.8) = -920

c) (-115). (-8) = 115. 8 = 920.

Bài 3.27 trang 56 sách bài tập Toán 6 Tập 1 - KNTT: Không thực hiện phép tính, hãy so sánh mỗi tích sau với 0:

a) 287. 522;                                

b) (-375). 959;                                   

c) (-278). (-864)

Lời giải.

a) 287. 522

Vì 287 và 522 là hai số nguyên cùng dấu khác 0 nên 287. 522 > 0.

b) (-375). 959

Vì -375 và 522 là hai số nguyên trái dấu khác 0 nên (-375). 959 < 0.

c) (-278). (-864)

Vì (-278) và (-864) là hai số nguyên trái dấu khác 0 nên (-278). (-864) > 0

Bài 3.28 trang 56 sách bài tập Toán 6 Tập 1 - KNTT: So sánh:

a) (+32). (-25) với (-7). (-8);

b) (-44). (-5) với (-11). (-20);

c) (-24). (+25) với (+30). (-21).

Lời giải.

a) Vì +32 và (-25) là hai số nguyên trái dấu khác 0 nên (+32). (-25) < 0 (1)

Vì (-7) và (-8) là hai số nguyên cùng dấu khác 0 nên (-7). (-8) > 0 (2)

Từ (1) và (2) ta có: (+32). (-25) < (-7). (-8)

Vậy (+32). (-25) < (-7). (-8)

b)

Ta có: (-44). (-5) = (-11). 4. (-5) = (-11). [4. (-5)] = (-11). [– (4.5)] = (-11). (-20)

Vậy (-44). (-5) = (-11). (-20)

c) Ta có: (- 24). (+25) = - (24. 25) = - 600

                (+30). (-21) = - (30. 21) = - 630

Vì 600 < 630 nên -600 > -630. Do đó (-24). (+25) > (+30). (-21).

Vậy (-24). (+25) > (+30). (-21).

Bài 3.29 trang 56 sách bài tập Toán 6 Tập 1 - KNTT: Cho a là một số nguyên âm. Hỏi b là số nguyên dương hay nguyên âm nếu:

a) Tích a. b là một số nguyên dương?

b) Tích a. b là một số nguyên âm?

Lời giải.

a) Tích a. b là một số nguyên dương thì a và b là hai số nguyên cùng dấu khác 0

Mà a là số nguyên âm nên b là số nguyên âm.

Vậy b là số nguyên âm.

b) Tích a. b là một số nguyên âm thì a và b là hai số nguyên trái dấu khác 0

Mà a là số nguyên âm nên b là số nguyên dương.

Vậy b là số nguyên dương.

Bài 3.30 trang 57 sách bài tập Toán 6 Tập 1 - KNTT: Điền các số thích hợp thay thế các dấu “?” trong bảng sau:

x

-28

55

-27

-25

0

-364

-1

-532

y

15

-8

-35

-280

-653

1

293

-1

x. y

?

?

?

?

?

?

?

?

Lời giải.

+) Với x = -28; y = 15 thì x.y = (-28). 15 = - (28. 15) = -420.

+) Với x = 55; y = -8 thì x.y = 55. (-8) = - (55. 8) = - 440

+) Với x = -27; y = -35 thì x.y = (-27). (-35) = 27. 35 = 945

+) Với x = -25; y = -280 thì x.y = (-25). (-280) = 25. 280 = 7 000

+) Với x = 0; y = -653 thì x.y = 0. (-653) = 0

+) Với x = -364; y = 1 thì x.y = (-364). 1 = -364

+) Với x = -1; y = 293 thì x.y = (-1). 293 = - (1. 293) = - 293

+) Với x = -532; y = -1 thì x.y = (-532). (-1) = 532. 1 = 532.

Ta có bảng sau:

x

-28

55

-27

-25

0

-364

-1

-532

y

15

-8

-35

-280

-653

1

293

-1

x. y

-420

-440

945

7 000

0

-364

-293

532

Bài 3.31 trang 57 sách bài tập Toán 6 Tập 1 - KNTT: Tìm số nguyên x, biết:

a) 9. (x + 28) = 0;

b) (27 – x). (x + 9) = 0;

c) (-x). (x – 43) = 0.

Lời giải.

a) 9. (x + 28) = 0

x + 28 = 0: 9

x + 28 = 0

x = 0 – 28

x = -28

Vậy x = -28.

b) Tích hai thừa số bằng 0 chỉ xảy ra khi một trong hai thừa số bằng 0

(27 – x). (x + 9) = 0

Suy ra 27 - x = 0 hoặc x + 9 = 0

Trường hợp 1:                                           

27 – x = 0                                                             

x = 27 – 0                                                       

x = 27                                                    

Trường hợp 2:

x + 9 = 0

x = 0 - 9

 x = -9

Vậy x = 27, x = -9.

c) Tích hai thừa số bằng 0 chỉ xảy ra khi một trong hai thừa số bằng 0

(-x). (x – 43) = 0

Suy ra - x = 0 hoặc x - 43 = 0

Trường hợp 1:                                                

– x = 0                                                               

x = 0                                                              

Trường hợp 2:

x - 43 = 0

x = 0 + 43

x = 43

Vậy x = 0, x = 43.

Bài 3.32 trang 57 sách bài tập Toán 6 Tập 1 - KNTT: Tính một cách hợp lí:

a) (29 – 9). (-9) + (-13 – 7). 21;

b) (-157). (127 – 316) – 127. (316 – 157).

Lời giải.

a) (29 – 9). (-9) + (-13 – 7). 21

= 20. (-9) + [- (13 + 7). 21]

= 20. (-9) + (-20). 21

= (-20). 9 + (-20). 21

= (-20). (9 + 21)

= (-20). 30

= - (20. 30)

= - 600.

b) (-157). (127 – 316) – 127. (316 – 157)

= (- 157). 127 + (-157). (-316) + (–127). 316 + (-127). (-157)

= -157. 127 + 157. 316 – 127. 316 + 127. 157

= [- (127. 157) + 127. 157] + (157. 316 – 127. 316)

= 0 + 316. (157 – 127)

= 316. 30

= 9 480.

Bài 3.33 trang 57 sách bài tập Toán 6 Tập 1 - KNTT: Một xí nghiệp may chuyển đổi may mẫu quần áo kiểu mới. Biết rằng số vải để may mỗi bộ quần áo theo mẫu mới tăng thêm x (dm) so với mẫu cũ. Hỏi trong mỗi trường hợp sau, số vải dùng để may 420 bộ quần áo theo mẫu mới tăng thêm bao nhiêu đề - xi – mét?

a) x = 18;                                       

b) x = -7.

Lời giải.

Để may mỗi bộ quần áo kiểu mới, số vải cần dùng tăng thêm x (dm). Do đó để may 420 bộ, số vải cần dùng tăng thêm 420. x (dm).

a) Khi x = 18 dm, số vải tăng thêm là: 420. 18 = 7 560 (dm);

b) Khi x = -7 dm, số vải tăng thêm là: 420. (-7) = - 2 940 (dm), nghĩa là số vải cần dùng ít hơn 2 940 dm so với may theo kiểu cũ.

Vậy với x = 18, số vải cần may thêm là 7 560 dm

        với x = -7 số vải cần dùng ít hơn 2 940 dm so với may kiểu cũ.

Bài 3.34 trang 57 sách bài tập Toán 6 Tập 1 - KNTT: Cho năm số nguyên có tính chất: Tích của ba số tùy ý trong năm số đó luôn là số nguyên âm. Hỏi tích của năm số đó là số nguyên âm hay nguyên dương? Hãy giải thích tại sao?

Lời giải.

Vì tích của ba số tùy ý trong 5 số đó luôn là số nguyên âm, do đó trong các số đã cho phải có 1 số nguyên âm. Gọi số nguyên âm ấy là a. Bốn số (khác a) còn lại cũng có tính chất: Tích của ba số bất kì trong chúng là số nguyên âm. Tương tự như vậy trong ba số đó có 1 số nguyên âm. Gọi số ấy là b (theo cách chọn, ta có b khác a).

Gọi p là tích của ba số còn lại (khác a và b) là số nguyên âm.

Khi đó tích của năm số đã cho đúng bằng a. b. p

Vì a là số nguyên âm, b là số nguyên âm nên a. b là số nguyên dương, p là tích của ba số là số nguyên âm nên p là số nguyên âm nên a. b. p là số nguyên âm

Do đó tích của năm số đó là số nguyên âm.

 

Xem thêm lời giải sách bài tập Toán lớp 6 sách Kết nối tri thức hay, chi tiết khác:

Bài 17: Phép chia hết. Ước và bội của một số nguyên

Ôn tập Chương 3

Bài 18: Hình tam giác đều. Hình vuông. Hình lục giác đều

Bài 19: Hình chữ nhật. Hình thoi. Hình bình hành. Hình thang cân

Bài 20: Chu vi và diện tích của một số tứ giác đã học

Xem thêm tài liệu Toán lớp 6 sách Kết nối tri thức hay, chi tiết khác:

Lý thuyết Bài 16: Phép nhân số nguyên

Trắc nghiệm Bài 16: Phép nhân hai số nguyên

1 1,016 04/11/2022
Tải về


Xem thêm các chương trình khác: