Vẽ đồ thị các hàm số bậc ba sau: a) y = x^3; b) y = x^3 – 3x; c) y = −x^3 + 3x; d) y = x^3 – 3x + 2
Lời giải Thực hành 1 trang 89 Toán 12 Tập 1 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12.
Giải Toán 12 Chân trời sáng tạo Bài 1: Vẽ đồ thị hàm số bằng phần mềm Geogebra
Thực hành 1 trang 89 Toán 12 Tập 1: Vẽ đồ thị các hàm số bậc ba sau:
a) y = x3; b) y = x3 – 3x;
c) y = −x3 + 3x; d) y = x3 – 3x + 2.
Lời giải:
a) y = x3
- Tạo các thanh trượt biểu thị các tham số a, b, c, d bằng cách nhấp chuột liên tiếp vào thanh công cụ và vào vị trí màn hình nơi mà ta muốn đặt thanh trượt.
- Nhập hàm số y = x3 vào vùng nhập lệnh.
- Ta được đồ thị như hình vẽ
- Nhận xét:
Hàm số đồng biến trên khoảng (0; +∞) và nghịch biến trên khoảng (−∞; 0).
Hàm số đã cho không có cực trị.
Đồ thị có tâm đối xứng là (0; 0).
b) y = x3 – 3x
- Tạo các thanh trượt biểu thị các tham số a, b, c, d bằng cách nhấp chuột liên tiếp vào thanh công cụ và vào vị trí màn hình nơi mà ta muốn đặt thanh trượt.
- Nhập hàm số y = x3 – 3x vào vùng nhập lệnh.
- Ta được đồ thị như hình vẽ
Nhận xét:
Hàm số đồng biến trên các khoảng (−∞; −1) và (1; +∞).
Hàm số nghịch biến trên khoảng (−1; 1).
Điểm cực đại là (−1; 2), điểm cực tiểu là (1; −2).
Đồ thị hàm số có tâm đối xứng là (0; 0).
c) y = −x3 + 3x
- Tạo các thanh trượt biểu thị các tham số a, b, c, d bằng cách nhấp chuột liên tiếp vào thanh công cụ và vào vị trí màn hình nơi mà ta muốn đặt thanh trượt.
- Nhập hàm số y = −x3 + 3x vào vùng nhập lệnh.
- Ta được đồ thị như hình vẽ
Nhận xét:
Hàm số nghịch biến trên các khoảng (−∞; −1) và (1; +∞).
Hàm số đồng biến trên khoảng (−1; 1).
Điểm cực đại là (1; 2), điểm cực tiểu là (−1; −2).
Đồ thị hàm số có tâm đối xứng là (0; 0).
d) y = x3 – 3x + 2
- Tạo các thanh trượt biểu thị các tham số a, b, c, d bằng cách nhấp chuột liên tiếp vào thanh công cụ và vào vị trí màn hình nơi mà ta muốn đặt thanh trượt.
- Nhập hàm số y = x3 – 3x + 2 vào vùng nhập lệnh.
- Ta được đồ thị như hình vẽ
Nhận xét:
Hàm số đồng biến trên các khoảng (−∞; −1) và (1; +∞).
Hàm số nghịch biến trên khoảng (−1; 1).
Điểm cực đại là (−1; 4), điểm cực tiểu là (1; 0).
Đồ thị hàm số có tâm đối xứng là (0; 2).
Xem thêm các bài giải sách giáo khoa Toán 12 bộ sách Chân trời sáng tạo hay, chi tiết khác:
Thực hành 1 trang 89 Toán 12 Tập 1: Vẽ đồ thị các hàm số bậc ba sau: a) y = x3; b) y = x3 – 3x; c) y = −x3 + 3x; d) y = x3 – 3x + 2.
Thực hành 2 trang 89 Toán 12 Tập 1: Vẽ đồ thị các hàm số sau: a) y = ; b) y = .
Thực hành 3 trang 90 Toán 12 Tập 1: Vẽ đồ thị các hàm số sau: a) y = ; b) y = ; c) y = .
Xem thêm các bài giải sách giáo khoa Toán 12 bộ sách Chân trời sáng tạo hay, chi tiết khác:
Bài tập cuối chương 2 trang 65
Bài 1: Khoảng biến thiên và khoảng tử phân vị của mẫu số liệu ghép nhóm
Bài 2: Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm
Bài tập cuối chương 3 trang 84
Bài 2: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số bằng máy tính cầm tay
Xem thêm các chương trình khác:
- Soạn văn 12 Chân trời sáng tạo (hay nhất)
- Văn mẫu 12 - Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn 12 – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn 12 - Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn 12 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn 12 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 12 - Friends Global
- Trọn bộ Từ vựng Tiếng Anh lớp 12 Friends Global đầy đủ nhất
- Trọn bộ Ngữ pháp Tiếng Anh lớp 12 Friends Global đầy đủ nhất
- Giải sbt Tiếng Anh 12 – Friends Global
- Giải sgk Lịch sử 12 – Chân trời sáng tạo
- Giải Chuyên đề học tập Lịch sử 12 – Chân trời sáng tạo
- Giải sbt Lịch sử 12 – Chân trời sáng tạo
- Giải sgk Địa lí 12 – Chân trời sáng tạo
- Giải Chuyên đề học tập Địa lí 12 – Chân trời sáng tạo
- Giải sbt Địa lí 12 – Chân trời sáng tạo
- Giải sgk Tin học 12 – Chân trời sáng tạo
- Giải Chuyên đề học tập Tin học 12 – Chân trời sáng tạo
- Giải sbt Tin học 12 – Chân trời sáng tạo
- Lý thuyết Tin học 12 - Chân trời sáng tạo
- Giải sgk Công nghệ 12 – Chân trời sáng tạo
- Giải sgk Kinh tế pháp luật 12 – Chân trời sáng tạo
- Giải Chuyên đề học tập Kinh tế pháp luật 12 – Chân trời sáng tạo
- Giải sbt Kinh tế pháp luật 12 – Chân trời sáng tạo
- Giải sgk Giáo dục quốc phòng 12 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 12 – Chân trời sáng tạo
- Giải sgk Vật lí 12 – Chân trời sáng tạo
- Giải Chuyên đề học tập Vật lí 12 – Chân trời sáng tạo
- Lý thuyết Vật lí 12 – Chân trời sáng tạo
- Giải sbt Vật lí 12 – Chân trời sáng tạo
- Giải sgk Hóa học 12 – Chân trời sáng tạo
- Giải Chuyên đề học tập Hóa 12 – Chân trời sáng tạo
- Lý thuyết Hóa 12 – Chân trời sáng tạo
- Giải sbt Hóa 12 – Chân trời sáng tạo
- Giải sgk Sinh học 12 – Chân trời sáng tạo
- Giải Chuyên đề học tập Sinh học 12 – Chân trời sáng tạo
- Lý thuyết Sinh học 12 – Chân trời sáng tạo
- Giải sbt Sinh học 12 – Chân trời sáng tạo