Giải Toán 10 trang 95 Tập 2 Kết nối tri thức
Với giải bài tập Toán lớp 10 trang 95 Tập 2 trong Bài tập cuối năm sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 95 Tập 2.
Giải Toán 10 trang 95 Tập 2
Bài 1 trang 95 Toán 10 Tập 2: Cho hệ bất phương trình bậc nhất hai ẩn . Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình đã cho?
Lời giải
Đáp án đúng là: C.
Một cặp số là nghiệm của hệ bất phương trình khi nó là nghiệm của tất cả cá bất phương trình trong hệ.
Thay tọa độ của các điểm ở phần đáp án vào hệ bất phương trình đã cho và xét xem tọa độ điểm nào thỏa mãn.
Ta có:
- Đáp án A: Ta có 1 + 1 > 2 (vô lí) nên điểm (1; 1) không thỏa mãn bất phương trình (1), vậy điểm (1; 1) không thuộc miền nghiệm của hệ bất phương trình đã cho.
- Đáp án B: Ta có 2 + 0 > 2 (vô lí) nên điểm (2; 0) không thỏa mãn bất phương trình (1), vậy điểm (2; 0) không thuộc miền nghiệm của hệ bất phương trình đã cho.
- Đáp án C: Ta có 3 + 2 > 2 (luôn đúng) và 3 – 2 ≤ 1 (luôn đúng) nên tọa độ điểm (3; 2) thỏa mãn của hai bất phương trình (1) và (2), vậy điểm (3; 2) thuộc miền nghiệm của hệ bất phương trình đã cho.
- Đáp án D: Ta có 3 + (– 2) > 2 (vô lý) nên điểm (3; – 2) không thỏa mãn bất phương trình (1), vậy điểm (3; – 2) không thuộc miền nghiệm của hệ bất phương trình đã cho.
Bài 2 trang 95 Toán 10 Tập 2: Cho tam giác ABC. Có bao nhiêu điểm M thỏa mãn ?
Lời giải
Đáp án đúng là: A.
Gọi G là trọng tâm của tam giác ABC.
Theo tính chất trọng tâm của tam giác, ta có: .
Theo bài ra:
(áp dụng quy tắc ba điểm).
.
Do đó, tập hợp các điểm M thỏa mãn yêu cầu bài toán là đường tròn tâm G bán kính 1.
Vậy có vô số điểm M thỏa mãn.
Bài 3 trang 95 Toán 10 Tập 2: Biết rằng parabol y = x2 + bx + c có đỉnh là I(1; 4). Khi đó giá trị của b + c là
Lời giải
Đáp án đúng là: C.
Parabol y = x2 + bx + c có đỉnh là I(1; 4) nên .
Tọa độ đỉnh I(1; 4) thỏa mãn phương trình y = x2 + bx + c nên ta có:
4 = 12 + (– 2) . 1 + c ⇔ c = 5.
Vậy b + c = – 2 + 5 = 3.
Bài 4 trang 95 Toán 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho đường thẳng Δ: x + 2y – 5 = 0. Tìm mệnh đề sai trong các mệnh đề sau:
A. Vectơ là một vectơ pháp tuyến của Δ.
B. Vectơ là một vectơ chỉ phương của Δ.
C. Đường thẳng Δ song song với đường thẳng d: .
D. Đường thẳng Δ có hệ số góc k = 2.
Lời giải
Đáp án đúng là: D.
+) Phương trình đường thẳng Δ: x + 2y – 5 = 0.
Một vectơ pháp tuyến của đường thẳng ∆ là .
Từ đó suy ra một vectơ chỉ phương của ∆ là .
Vậy đáp án A và đáp án B đúng.
+) Đường thẳng d: có một vectơ chỉ phương là và đi qua điểm A(1; 1).
Mà 1 + 2 . 1 – 5 = – 2 ≠ 0 nên điểm A(1; 1) không thuộc đường thẳng ∆.
Khi đó hai đường thẳng ∆ và d có cùng vectơ chỉ phương, có điểm A thuộc d nhưng không thuộc ∆, vậy d // ∆.
Vậy đáp án C đúng.
+) Ta có: x + 2y – 5 = 0 ⇔ y = .
Do đó hệ số góc của ∆ là k = .
Vậy đáp án D sai.
Bài 5 trang 95 Toán 10 Tập 2: Trong khai triển nhị thức Newton của (2 + 3x)4, hệ số của x2 là:
Lời giải
Đáp án đúng là: D.
Áp dụng công thức nhị thức Newton, ta có:
(2 + 3x)4
= . 24 + . 23 . 3x + . 22 . (3x)2 + . 2 . (3x)3 + . (3x)4
= 16 + 24x + 36x2 + 54x3 + 81x4 .
Vậy hệ số của x2 trong khai triển nhị thức Newton của (2 + 3x)4 là 36.
Bài 6 trang 95 Toán 10 Tập 2: Một tổ gồm 7 nam và 3 nữ. Chọn ngẫu nhiên hai người. Xác suất để trong hai người được chọn có ít nhất một nữ là:
Lời giải
Đáp án đúng là: B.
Số bạn của tổ là: 7 + 3 = 10 (bạn).
Chọn ngẫu nhiên 2 người trong 10 người, mỗi cách chọn là một tổ hợp chập 2 của 10, do đó có cách chọn.
Vậy n(Ω) = 45.
Gọi biến cố A: “Chọn được 2 người, trong đó có ít nhất 1 nữ”.
Để chọn được hai người, trong đó có ít nhất 1 nữ, ta xét hai trường hợp sau:
- Trường hợp 1: chọn 1 nữ và 1 nam.
Chọn 1 nữ trong 3 nữ có cách chọn.
Chọn 1 nam trong 7 nam có cách chọn.
Theo quy tắc nhân, có 3 . 7 = 21 cách chọn 2 người gồm 1 nữ, 1 nam.
- Trường hợp 2: chọn 2 nữ.
Chọn 2 nữ trong 3 nữ có cách chọn.
Vì hai trường hợp là rời nhau.
Vậy theo quy tắc cộng, có 21 + 3 = 24 cách chọn để chọn được 2 người có ít nhất một nữ.
Do đó, n(A) = 24.
Vậy xác suất để chọn được 2 người trong đó có ít nhất một nữ là
P(A) = .
B – Tự luận
Bài 7 trang 95 Toán 10 Tập 2: Cho các mệnh đề:
P: “Tam giác ABC là tam giác vuông tại A”;
Q: “Tam giác ABC có các cạnh thỏa mãn AB2 + AC2 = BC2”.
a) Hãy phát biểu các mệnh đề: P ⇒ Q, Q ⇒ P, P ⇔ Q, ⇒ . Xét tính đúng sai của các mệnh đề này.
b) Dùng các khái niệm “điều kiện cần” và “điều kiện đủ” để diễn tả mệnh đề P ⇒ Q.
Lời giải
a)
• P ⇒ Q: “Nếu tam giác ABC là tam giác vuông tại A thì tam giác ABC có các cạnh thỏa mãn AB2 + AC2 = BC2”.
Theo định lý Pythagore, mệnh đề P ⇒ Q là mệnh đề đúng.
• Q ⇒ P: “Nếu tam giác ABC có các cạnh thỏa mãn AB2 + AC2 = BC2 thì tam giác ABC là tam giác vuông tại A”.
Theo định lý Pythagore đảo, mệnh đề Q ⇒ P là mệnh đề đúng.
• P ⇔ Q: “Tam giác ABC là tam giác vuông tại A nếu và chỉ nếu tam giác ABC có các cạnh thỏa mãn AB2 + AC2 = BC2”.
Vì P ⇒ Q và Q ⇒ P đúng nên mệnh đề P ⇔ Q là mệnh đề đúng.
• Ta có: (phủ định của P): “Tam giác ABC không là tam giác vuông tại A”.
(phủ định của Q): “tam giác ABC có các cạnh không thỏa mãn AB2 + AC2 = BC2”.
Do đó, ⇒ : “Nếu tam giác ABC không là tam giác vuông tại A thì tam giác ABC có các cạnh không thỏa mãn AB2 + AC2 = BC2”.
Mệnh đề ⇒ là mệnh đề đúng.
b) Ta có:
• Tam giác ABC có các cạnh thỏa mãn AB2 + AC2 = BC2 là điều kiện cần để tam giác ABC là tam giác vuông tại A.
• Tam giác ABC là tam giác vuông tại A là điều kiện đủ để tam giác ABC có các cạnh thỏa mãn AB2 + AC2 = BC2.
c) Ta biết rằng một tam giác là vuông khi và chỉ khi đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền (được chứng minh ở bậc THCS).
Vậy nếu tam giác ABC có trung tuyến AM = BC thì tam giác ABC vuông tại A.
Vậy mối quan hệ giữa hai tập hợp X và Y là X = Y.
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Bài 2: Tập hợp và các phép toán trên tập hợp - Kết nối tri thức
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Soạn văn lớp 10 (ngắn nhất) – Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn lớp 10 - KNTT
- Bố cục tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Văn mẫu lớp 10 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 10 – Kết nối tri thức
- Giải sgk Tiếng Anh 10 Global Success – Kết nối tri thức
- Giải sbt Tiếng Anh 10 Global Success – Kết nối tri thức
- Ngữ pháp Tiếng Anh 10 Global success
- Bài tập Tiếng Anh 10 Global success theo Unit có đáp án
- Trọn bộ Từ vựng Tiếng Anh 10 Global success đầy đủ nhất
- Giải sgk Vật lí 10 – Kết nối tri thức
- Giải sbt Vật lí 10 – Kết nối tri thức
- Giải Chuyên đề Vật lí 10 – Kết nối tri thức
- Lý thuyết Vật lí 10 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 10 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 10 – Kết nối tri thức
- Lý thuyết Hóa học 10 – Kết nối tri thức
- Giải sbt Hóa học 10 – Kết nối tri thức
- Giải Chuyên đề Hóa học 10 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 10 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 10 – Kết nối tri thức
- Giải sbt Sinh học 10 – Kết nối tri thức
- Lý thuyết Sinh học 10 – Kết nối tri thức
- Giải Chuyên đề Sinh học 10 – Kết nối tri thức
- Giải sgk Lịch sử 10 – Kết nối tri thức
- Giải sbt Lịch sử 10 – Kết nối tri thức
- Giải Chuyên đề Lịch sử 10 – Kết nối tri thức
- Lý thuyết Lịch sử 10 - Kết nối tri thức
- Giải sgk Địa lí 10 – Kết nối tri thức
- Lý thuyết Địa Lí 10 – Kết nối tri thức
- Giải sbt Địa lí 10 – Kết nối tri thức
- Giải Chuyên đề Địa lí 10 – Kết nối tri thức
- Giải sgk Công nghệ 10 – Kết nối tri thức
- Lý thuyết Công nghệ 10 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải Chuyên đề Kinh tế và pháp luật 10 – Kết nối tri thức
- Lý thuyết KTPL 10 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sbt Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sgk Tin học 10 – Kết nối tri thức
- Lý thuyết Tin học 10 – Kết nối tri thức
- Giải sbt Tin học 10 – Kết nối tri thức
- Giải Chuyên đề Tin học 10 – Kết nối tri thức
- Giải sgk Giáo dục thể chất 10 – Kết nối tri thức