Cho tam giác ABC có góc A<90 độ. Dựng ra phía ngoài tam giác hai tam giác vuông

Lời giải bài 4.31 trang 65 SBT Toán 10 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 10 Tập 1.

1 1,547 09/12/2022


Giải SBT Toán lớp 10 Bài 11: Tích vô hướng của hai vectơ

Bài 4.31 trang 65 SBT Toán 10 Tập 1:

Cho tam giác ABC có A^<90°. Dựng ra phía ngoài tam giác hai tam giác vuông cân đỉnh A là ABD và ACE. Gọi M, N, P theo thứ tự là trung điểm BC, BD, CE. Chứng minh rằng:

a) AM vuông góc với DE;

b) BE vuông góc với CD;

c) Tam giác MNP là một tam giác vuông cân.

Lời giải:

Sách bài tập Toán 10 Bài 11: Tích vô hướng của hai vectơ - Kết nối tri thức (ảnh 1)

a) +) Vì M là trung điểm của BC nên AB+AC=2AM

AM=12AB+AC

+) Theo quy tắc ba điểm ta có: DE=AEAD

Sách bài tập Toán 10 Bài 11: Tích vô hướng của hai vectơ - Kết nối tri thức (ảnh 1)

Mà AB AD nên AB.AD=0

Và AC AE nên AC.AE=0

Do đó AM.DE=12AB.AEAC.AD

Ta có:

AB.AE=AB.AE.cosBAE^

AC.AD=AC.AD.cosCAD^

• AB = AD (do ∆ABD vuông cân tại A)

Và AC = AE (do ∆ACE vuông cân tại A)

BAE^=BAC^+CAE^=BAC^+90°

CAD^=BAC^+BAD^=BAC^+90°

BAE^=CAD^

Do đó 

Sách bài tập Toán 10 Bài 11: Tích vô hướng của hai vectơ - Kết nối tri thức (ảnh 1)

b) Ta có: 

Sách bài tập Toán 10 Bài 11: Tích vô hướng của hai vectơ - Kết nối tri thức (ảnh 1)

Ta có:

AE.AD=AE.AD.cosDAE^

AB.AC=AB.AC.cosBAC^

• AB = AD và AC = AE

DAE^=360°-DAB^-BAC^-CAE^DAE^=360°-90°- BAC^-90°DAE^=180° -BAC^cosDAE ^=cos(180°-BAC^) = -cosBAC^

Sách bài tập Toán 10 Bài 11: Tích vô hướng của hai vectơ - Kết nối tri thức (ảnh 1)

c) Ta có: 

Sách bài tập Toán 10 Bài 11: Tích vô hướng của hai vectơ - Kết nối tri thức (ảnh 1)

BE = CD                             (1)

Xét tam giác BCD có M, N lần lượt là trung điểm của BC, BD

Nên MN là đường trung bình của ∆BCD

MN=12CD và MN // CD    (2)

Chứng minh tương tự ta cũng có:

MP là đường trung bình của ∆BCE

MP=12BE và MP // BE      (3)

Từ (1), (2) và (3) suy ra MN = MP.

BE CD (câu b), MN // CD và MP // BE

Nên MN MP

NMP^=90°

Tam giác MNP có MN = MP và NMP^=90°

Suy ra tam giác MNP là tam giác vuông cân tại M.

Xem thêm lời giải sách bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Bài 4.29 trang 65 SBT Toán 10 Tập 1: Cho tam giác đều ABC có độ dài các cạnh bằng 1...

Bài 4.30 trang 65 SBT Toán 10 Tập 1: Cho hình chữ nhật ABCD có AB = 1, BC=2. Gọi M là trung điểm của AD...

Bài 4.32 trang 65 SBT Toán 10 Tập 1: Cho hai vectơ ab thoả mãn a=6,b=8...

Bài 4.33 trang 65 SBT Toán 10 Tập 1: Cho tam giác ABC không cân. Gọi D, E, F theo thứ tự là chân các đường cao...

Bài 4.34 trang 65 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho hai điểm A(2; 1) và B(4; 3)...

Bài 4.35 trang 65 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho hai điểm A(1; 4) và C(9; 2) là hai đỉnh...

Bài 4.36 trang 66 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho hai điểm A(1; 1) và B(7; 5)...

Bài 4.37 trang 66 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1)...

Bài 4.38 trang 66 SBT Toán 10 Tập 1: Cho ba điểm M, N, P. Nếu một lực F không đổi tác động lên một chất điểm...

1 1,547 09/12/2022


Xem thêm các chương trình khác: