Giải Toán 12 trang 52 Tập 1 Kết nối tri thức

Với giải bài tập Toán 12 trang 52 Tập 1 trong Bài 6: Vectơ trong không gian sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 12 trang 52 Tập 1.

1 120 09/06/2024


Giải Toán 12 trang 52 Tập 1

Luyện tập 6 trang 52 Toán 12 Tập 1: Trong Ví dụ 6, chứng minh rằng:

a) BNDM là hai vectơ đối nhau;

b) SDBNCM=SC

Lời giải:

Tài liệu VietJack

a) Tứ giác ABCD là hình bình hành nên AB=CD, AB//CD. Suy ra BM=DN (vì M, N lần lượt là trung điểm của AB và CD) và BM//DN. Do đó, tứ giác DMBN là hình bình hành, do đó, BN=DM và BN//DM. Hai vectơ BNDM có cùng độ dài và ngược hướng nên BNDM là hai vectơ đối nhau.

b) Theo a ta có: BN=DM

Do đó, SDBNCM=SD+DM+MC=SM+MC=SC

3. Tích của một số với một vectơ trong không gian

HĐ6 trang 52 Toán 12 Tập 1: Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M, N lần lượt là trung điểm của AB, AC (H.2.17)

Tài liệu VietJack

a) Hai vectơ MNBC có cùng phương không? Có cùng hướng không?

b) Giải thích vì sao |MN|=12|BC|.

Lời giải:

a) Vì MN là đường trung bình của tam giác ABC nên MN//BC.

Vì BCC’B’ là hình bình hành nên BC//B’C’. Suy ra: MN//B’C’.

Do đó hai vectơ MNBC có cùng phương và cùng hướng.

b) Vì BCC’B’ là hình bình hành nên BC=BC

Vì MN là đường trung bình của tam giác ABC nên MN=12BC

Suy ra: |MN|=12|BC|.

Xem thêm các bài giải sách giáo khoa Toán 12 bộ sách Kết nối tri thức hay, chi tiết khác:

Giải Toán 12 trang 46 Tập 1

Giải Toán 12 trang 47 Tập 1

Giải Toán 12 trang 48 Tập 1

Giải Toán 12 trang 49 Tập 1

Giải Toán 12 trang 50 Tập 1

Giải Toán 12 trang 51 Tập 1

Giải Toán 12 trang 52 Tập 1

Giải Toán 12 trang 53 Tập 1

Giải Toán 12 trang 54 Tập 1

Giải Toán 12 trang 55 Tập 1

Giải Toán 12 trang 56 Tập 1

Giải Toán 12 trang 57 Tập 1

Giải Toán 12 trang 58 Tập 1

Giải Toán 12 trang 59 Tập 1

1 120 09/06/2024


Xem thêm các chương trình khác: