Trong Ví dụ 10, hãy tính các tích vô hướng vecto AS.BD và vecto AS.CD

Lời giải Luyện tập 10 trang 57 Toán 12 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12.

1 993 09/06/2024


Giải Toán 12 Kết nối tri thức Bài 6: Vectơ trong không gian

Luyện tập 10 trang 57 Toán 12 Tập 1: Trong Ví dụ 10, hãy tính các tích vô hướng AS.BDAS.CD

Lời giải:

Tài liệu VietJack

Gọi O là giao điểm của hai đường chéo AC và BD trong hình vuông ABCD. Do đó, O là trung điểm của BD, O là trung điểm của AC.

Tứ giác ABCD là hình vuông cạnh a nên độ dài đường chéo BD là a2OB=a22

Gọi E là trung điểm của SC. Mà O là trung điểm của AC nên OE là đường trung bình của tam giác SAC, do đó, OE//SA, OE=12SA=a2. Suy ra: AS=2OE

Vì O là trung điểm của BD nên BD=2OB

Vì tam giác SBC có ba cạnh bằng nhau nên tam giác SBC là tam giác đều. Do đó, BE là đường trung tuyến đồng thời là đường cao của tam giác SBC. Do đó, EB=a32.

Ta có: OE2+OB2=a24+a22=3a24=EB2 nên ΔEOB vuông tại O. Do đó, OEOB

Ta có: AS.BD=2OE.(2OB)=4OE.OB=0

Tứ giác ABCD là hình vuông nên CD=BA

Ta có:AS.CD=AS.BA=AS.AB=|AS|.|AB|cos(AS,AB)=|AS|.|AB|cosSAB^

Vì tam giác SAB có ba cạnh bằng nhau nên tam giác SAB đều, suy ra SAB^=600

Suy ra: AS.CD=|AS|.|AB|cosSAB^=a.a.cos600=a22

1 993 09/06/2024


Xem thêm các chương trình khác: