Trong không gian, cho hai vectơ a và vacto b không cùng phương. Lấy điểm A và vẽ các vectơ

Lời giải HĐ3 trang 49 Toán 12 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12.

1 204 09/06/2024


Giải Toán 12 Kết nối tri thức Bài 6: Vectơ trong không gian

HĐ3 trang 49 Toán 12 Tập 1: Trong không gian, cho hai vectơ ab không cùng phương. Lấy điểm A và vẽ các vectơ AB=a,BC=b. Lấy điểm A’ và vẽ các vectơ AB=a,BC=b (H.2.10).Tài liệu VietJack

a) Giải thích vì sao AA=BBBB=CC.

b) Giải thích vì sao AA’C’C là hình bình hành, từ đó suy ra AC=AC.

Lời giải:

a) Vì AB=a nên hai vectơ aAB cùng hướng và cùng độ dài.

AB=a nên hai vectơ aAB cùng hướng và cùng độ dài.

Do đó, hai vectơ ABAB cùng hướng và cùng độ dài. Suy ra, AB//A’B’ và AB=AB. Do đó, tứ giác ABB’A’ là hình bình hành. Suy ra, AA’//BB’ và AA=BB hai vectơ AA,BB có cùng hướng và cùng độ dài. Suy ra, AA=BB.

BC=b nên hai vectơ bBC cùng hướng và cùng độ dài.

BC=b nên hai vectơ bBC cùng hướng và cùng độ dài.

Do đó, hai vectơ BCBC cùng hướng và cùng độ dài. Suy ra, BC//B’C’ và BC=BC. Do đó, tứ giác CBB’C’ là hình bình hành. Suy ra, CC’//BB’ và CC=BB hai vectơ BB,CC có cùng hướng và cùng độ dài. Suy ra, BB=CC.

b) Vì hai vectơ AA,BB có cùng hướng và cùng độ dài; hai vectơ BB,CC có cùng hướng và cùng độ dài nên hai vectơ AACC có cùng hướng và cùng độ dài. Do đó, AA’//CC’ và AA=CC nên tứ giác AA’C’C là hình bình hành. Suy ra, AC=AC và AC//A’C’. Do đó, hai vectơ AC,AC có cùng hướng và cùng độ dài. Suy ra, AC=AC.

1 204 09/06/2024


Xem thêm các chương trình khác: