Trong không gian, cho hai vectơ a và b khác 0. Lấy điểm O và vẽ các vectơ OA = a; vecto OB = b

Lời giải HĐ7 trang 54 Toán 12 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12.

1 546 09/06/2024


Giải Toán 12 Kết nối tri thức Bài 6: Vectơ trong không gian

HĐ7 trang 54 Toán 12 Tập 1: Trong không gian, cho hai vectơ ab khác 0. Lấy điểm O và vẽ các vectơOA=a,OB=b. Lấy điểm O’ khác O và vẽ các vectơ OA=a,OB=b (H.2.21).

Tài liệu VietJack

a) Hãy giải thích vì sao AB=AB.

b) Áp dụng định lí côsin cho hai tam giác OAB và O’A’B’ để giải thích vì sao AOB^=AOB^

Phương pháp giải:

a) Sử dụng kiến thức về quy tắc ba điểm để chứng minh: Nếu A, B, C là ba điểm bất kì thì AB+BC=AC

b) Sử dụng kiến thức về định lí côsin để chứng minh: Cho tam giác ABC có, khi đó, cosA^=AB2+AC2BC22.AB.AC

Lời giải:

a) Ta có: AB=AO+OB;AB=AO+OB

OA=a,OB=b,OA=a,OB=bAO=AO;OB=OB

Do đó, AB=AB

b) Áp dụng định lí côsin vào tam giác AOB ta có: cosAOB^=OA2+OB2AB22.OA.OB

Áp dụng định lí côsin vào tam giác A’O’B’ ta có: cosAOB^=OA2+OB2AB22.OA.OB

AB=ABAB=AB,AO=AOOA=OA;OB=OBOB=OB

Do đó, cosAOB^=cosAOB^AOB^=AOB^

1 546 09/06/2024


Xem thêm các chương trình khác: