Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng: a) vecto AB + DD' + C'D' = CC'
Lời giải Bài 2.4 trang 58 Toán 12 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12.
Giải Toán 12 Kết nối tri thức Bài 6: Vectơ trong không gian
Bài 2.4 trang 58 Toán 12 Tập 1: Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng:
a) ;
b) ;
c)
* Lời giải:
a) Vì ABCD là hình bình hành nên
Vì CDD’C’ là hình bình hành nên
Ta có:
b) Ta có:
c) Vì ABCD là hình bình hành nên
Vì A’ACC’ là hình bình hành nên
* Phương pháp giải:
Sử dụng các phép tính toán vectơ trong không gian:
+ Tổng của hai vectơ
Trong không gian, cho hai vectơ . Lấy một điểm A tùy ý, vẽ , .
Vectơ được gọi là tổng của hai vectơ và , kí hiệu là .
+ Nếu ABCD là hình bình hành thì (quy tắc hình bình hành).
+ Với ba điểm O, A, B trong không gian, ta có: (quy tắc hiệu).
*Một số lý thuyết và dạng bài tập về vectơ trong không gian:
• Vectơ trong không gian
Vectơ trong không gian là một đoạn thẳng có hướng.
Chú ý:
Cho đoạn thẳng AB trong không gian. Nếu ta chọn điểm đầu là A, điểm cuối là B thì ta có một vectơ, kí hiệu là , đọc là “vectơ AB”.
Khi không cần chỉ rõ điểm đầu và điểm cuối của vectơ, vectơ còn được kí hiệu là , ...
• Các khái niệm có liên quan đến vectơ trong không gian như: giá của vectơ, độ dài của vectơ, vectơ cùng phương, vectơ cùng hướng, vectơ – không, hai vectơ bằng nhau, hai vectơ đối nhau, … được phát biểu tương tự như trong mặt phẳng.
Chú ý:
Cho điểm O và vectơ . Khi đó, tồn tại duy nhất điểm M trong không gian sao cho .
Để xác định điểm M, ta làm như sau (xem hình dưới):
• Qua O kẻ đường thẳng d song song hoặc trùng với giá của vectơ .
• Lấy điểm M trên đường thẳng d sao cho hai vectơ , là cùng hướng và độ dài đoạn thẳng OM bằng độ dài đoạn thẳng vectơ .
- Tổng của hai vectơ
Trong không gian, cho hai vectơ . Lấy một điểm A tùy ý, vẽ , .
Vectơ được gọi là tổng của hai vectơ và , kí hiệu là .
Chú ý:
• Phép lấy tổng hai vectơ còn được gọi là phép cộng vectơ.
• Phép cộng vectơ trong không gian cũng có các tính chất như phép cộng vectơ trong mặt phẳng, chẳng hạn: Phép cộng vectơ trong không gian cũng có các tính chất giao hoán, kết hợp, cộng với vectơ – không. Do đó, ta cũng định nghĩa được tổng của ba vectơ trong không gian.
• Khi thực hiện phép cộng vectơ trong không gian, ta vẫn có thể áp dụng quy tắc ba điểm, quy tắc hình bình hành như đối với vectơ trong mặt phẳng.
Đối với vectơ trong không gian, ta cũng có các quy tắc sau:
• Với ba điểm A, B, C trong không gian, ta có: (quy tắc ba điểm);
• Nếu ABCD là hình bình hành thì (quy tắc hình bình hành).
• Nếu ABCD.A'B'C'D' là hình hộp thì (quy tắc hình hộp).
- Hiệu của hai vectơ
• Trong không gian, cho hai vectơ . Hiệu của vectơ và vectơ là tổng của vectơ với vectơ đối của vectơ , kí hiệu là .
Phép lấy hiệu của hai vectơ còn được gọi là phép trừ vectơ.
Đối với vectơ trong không gian, ta có quy tắc sau:
• Với ba điểm O, A, B trong không gian, ta có: (quy tắc hiệu).
Tích của một số với một vectơ trong không gian
Tương tự như trong mặt phẳng, trong không gian ta cũng có định nghĩa sau:
Cho số thực k ≠ 0 và vectơ . Tích của số k với vectơ là một vectơ, kí hiệu là , được xác định như sau:
• Cùng hướng với vectơ nếu k > 0, ngược hướng với vectơ nếu k < 0;
• Có độ dài bằng |k| . | |.
Quy ước: 0. = , k. = . Do đó, k. = khi và chỉ khi k = 0 hoặc = .
Chú ý:
• Phép lấy tích của một số với một vectơ gọi là phép nhân một số với một vectơ.
• Phép nhân một số với một vectơ trong không gian có các tính chất sau:
Với hai vectơ bất kì , và hai số thực h, k ta có:
+ k( + ) = k + k ; k(- ) = k − k ;
+ (h + k) = h + k ;
+ h(k ) = (hk) ;
+ 1 = ; (−1) = − .
• Hai vectơ , khác là cùng phương khi và chỉ khi có một số thực k ≠ 0 sao cho .
Tích vô hướng của hai vectơ trong không gian
Trong không gian, cho hai vectơ , khác . Lấy một điểm O tùy ý và vẽ hai vectơ , . Góc giữa hai vectơ , trong không gian là góc giữa hai vectơ , kí hiệu là .
Chú ý: 0o ≤ ≤ 180o.
Xem thêm các bài viết liên quan hay, chi tiết
Lý thuyết Vectơ và các phép toán vectơ trong không gian– Toán lớp 12 Kết nối tri thức
Toán 12 Bài 6 giải vở bài tập (Kết nối tri thức): Vectơ trong không gian
Xem thêm các bài giải sách giáo khoa Toán 12 bộ sách Kết nối tri thức hay, chi tiết khác:
Luyện tập 1 trang 47 Toán 12 Tập 1: Cho hình lập phương ABCD.A’B’C’D’ (H.2.6). Trong các vectơ : a) Hai vectơ nào có giá cùng nằm trong mặt phẳng (ABCD)?...
HĐ2 trang 47 Toán 12 Tập 1: Cho hình hộp ABCD.A’B’C’D’ (H.2.7) a) So sánh độ dài hai vectơ và ...
Luyện tập 2 trang 48 Toán 12 Tập 1: Cho hình chóp S. ABCD có đáy ABCD là hình bình hành.
a) Trong ba vectơ và , vectơ nào bằng vectơ ...
Luyện tập 3 trang 50 Toán 12 Tập 1: Trong Ví dụ 3, hãy tính độ dài của vectơ . Ví dụ 3: Cho hình lập phương ABCD.A’B’C’D’ có độ dài mỗi cạnh bằng 1 (H.2.12)...
Luyện tập 4 trang 50 Toán 12 Tập 1: Cho tứ diện ABCD (H.2.13). Chứng minh rằng ...
HĐ4 trang 50 Toán 12 Tập 1: Cho hình hộp ABCD.A’B’C’D’ (H.2.14). a) Hai vectơ và có bằng nhau hay không?...
Luyện tập 5 trang 50 Toán 12 Tập 1: Cho hình hộp hình chữ nhật ABCD.A’B’C’D’. Chứng minh rằng
Luyện tập 6 trang 52 Toán 12 Tập 1: Trong Ví dụ 6, chứng minh rằng: a) và là hai vectơ đối nhau; b) ...
Câu hỏi trang 53 Toán 12 Tập 1: Hai vectơ và có bằng nhau không? Hai vectơ và có bằng nhau không?
Luyện tập 10 trang 57 Toán 12 Tập 1: Trong Ví dụ 10, hãy tính các tích vô hướng và
Luyện tập 11 trang 57 Toán 12 Tập 1: Cho hình lập phương ABCD.A’B’C’D’. Chứng minh rằng .
Bài 2.4 trang 58 Toán 12 Tập 1: Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng: a) ; b) ; c)
Bài 2.5 trang 58 Toán 12 Tập 1: Cho hình lăng trụ tam giác ABC.A’B’C’ có và . Hãy biểu diễn các vectơ sau qua các vectơ : a) ; b) ; c) .
Bài 2.12 trang 59 Toán 12 Tập 1: Cho tứ diện ABCD. Chứng minh rằng: a) ; b) .
Xem thêm các bài giải sách giáo khoa Toán 12 bộ sách Kết nối tri thức hay, chi tiết khác:
Bài tập cuối chương 1 trang 42
Bài 7: Hệ trục toạ độ trong không gian
Bài 8: Tính đơn điệu và cực trị của hàm số
Xem thêm các chương trình khác:
- Soạn văn 12 Kết nối tri thức (hay nhất)
- Văn mẫu 12 - Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn 12 – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn 12 - Kết nối tri thức
- Bố cục tác phẩm Ngữ văn 12 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn 12 – Kết nối tri thức
- Bài tập Tiếng Anh 12 Global success theo Unit có đáp án
- Giải sgk Tiếng Anh 12 - Global success
- Trọn bộ Từ vựng Tiếng Anh 12 Global success đầy đủ nhất
- Trọn bộ Ngữ pháp Tiếng Anh 12 Global success đầy đủ nhất
- Giải sbt Tiếng Anh 12 – Global Success
- Giải sgk Vật lí 12 – Kết nối tri thức
- Giải Chuyên đề học tập Vật lí 12 – Kết nối tri thức
- Lý thuyết Vật lí 12 – Kết nối tri thức
- Giải sbt Vật lí 12 – Kết nối tri thức
- Giải sgk Hóa học 12 – Kết nối tri thức
- Giải Chuyên đề học tập Hóa 12 – Kết nối tri thức
- Lý thuyết Hóa 12 – Kết nối tri thức
- Giải sbt Hóa 12 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 12 cả 3 sách (chương trình mới 2025)
- Giải sgk Sinh học 12 – Kết nối tri thức
- Giải Chuyên đề học tập Sinh học 12 – Kết nối tri thức
- Lý thuyết Sinh học 12 – Kết nối tri thức
- Giải sbt Sinh học 12 – Kết nối tri thức
- Giải sgk Lịch sử 12 – Kết nối tri thức
- Giải Chuyên đề học tập Lịch sử 12 – Kết nối tri thức
- Giải sbt Lịch sử 12 – Kết nối tri thức
- Giải sgk Địa lí 12 – Kết nối tri thức
- Giải Chuyên đề học tập Địa lí 12 – Kết nối tri thức
- Giải sbt Địa lí 12 – Kết nối tri thức
- Giải sgk Tin học 12 – Kết nối tri thức
- Giải Chuyên đề học tập Tin học 12 – Kết nối tri thức
- Giải sbt Tin học 12 – Kết nối tri thức
- Lý thuyết Tin học 12 - Kết nối tri thức
- Giải sgk Công nghệ 12 – Kết nối tri thức
- Giải sgk Kinh tế pháp luật 12 – Kết nối tri thức
- Giải Chuyên đề học tập Kinh tế pháp luật 12 – Kết nối tri thức
- Giải sbt Kinh tế pháp luật 12 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng 12 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 12 – Kết nối tri thức