Cho hình chóp tứ giác S. ABCD. Chứng minh rằng tứ giác ABCD là hình bình hành nếu và chỉ nếu SA + SC = SB + SD

Lời giải Bài 2.6 trang 58 Toán 12 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12.

1 1,251 09/06/2024


Giải Toán 12 Kết nối tri thức Bài 6: Vectơ trong không gian

Bài 2.6 trang 58 Toán 12 Tập 1: Cho hình chóp tứ giác S. ABCD. Chứng minh rằng tứ giác ABCD là hình bình hành nếu và chỉ nếu SA+SC=SB+SD.

Lời giải:

Tài liệu VietJack

Chứng minh: Nếu tứ giác ABCD là hình bình hành thì SA+SC=SB+SD

Gọi O là tâm hình bình hành ABCD. Khi đó, O là trung điểm của AC, BD.

Suy ra OC=OA,OD=OB

Ta có:SA+SC=SO+OA+SO+OC=2SO+(OAOA)=2SO

SB+SD=SO+OB+SO+OD=2SO+(OBOB)=2SO

Do đó, SA+SC=SB+SD

Chứng minh: Nếu SA+SC=SB+SD thì tứ giác ABCD là hình bình hành:

Ta có: SA+SC=SB+SDSASB=SDSCBA=CD

Suy ra, hai vectơ BACD cùng hướng và có độ lớn bằng nhau.

Suy ra, AB=CD, AB//CD. Khi đó, tứ giác ABCD là hình bình hành.

Vậy tứ giác ABCD là hình bình hành nếu và chỉ nếu SA+SC=SB+SD

1 1,251 09/06/2024


Xem thêm các chương trình khác: