Giải Toán 11 trang 98 Tập 2 Chân trời sáng tạo
Với giải bài tập Toán 11 trang 98 Tập 2 trong Bài tập cuối chương 9 trang 98 sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 98 Tập 2.
Giải Toán 11 trang 98 Tập 2
A. "Xuất hiện hai mặt có cùng số chấm".
B. "Tổng số chấm xuất hiện là số lẻ".
C. "Xuất hiện ít nhất một mặt có số chấm là số lẻ".
D. "Xuất hiện hai mặt có số chấm khác nhau".
Lời giải:
Đáp án đúng là: B
Ta có A = {(1; 1); (1; 3); (1; 5); (3; 1); (3; 3); (3; 5); (5; 1); (5; 3); (5; 5)}.
Gọi biến cố B “Tổng số chấm xuất hiện là số lẻ”.
Suy ra B = {(1; 2); (1; 4); (1; 6); (2; 1); (2; 3); (2; 5); (3; 2); (3; 4); (3; 6); (4; 1); (4; 3); (4; 5); (5; 2); (5; 4); (5; 6); (6; 1); (6; 3); (6; 5)}.
Suy ra, A và B xung khắc.
Lời giải:
Đáp án đúng là: B
Vì A, B độc lập nên P(AB) = P(A)P(B) = 0,4 × 0,5 = 0,2.
Ta có P(A B) = P(A) + P(B) – P(AB) = 0,4 + 0,5 – 0,2 = 0,7.
Lời giải:
Đáp án đúng là: C
Ta có = {(i; j)| 1 ≤ i ≤ 6; 1 ≤ j ≤ 6}, suy ra n( ) = 36.
Gọi A là biến cố “ Tổng số chấm xuất hiện trên hai con xúc xắc chia hết cho 5”.
Khi đó A = {(1; 4); (2; 3); (3; 2); (4; 1); (4; 6); (5; 5); (6; 4)}, suy ra n(A) = 7.
Do đó .
Lời giải:
Đáp án đúng là: C
Gọi A là biến cố “Hai quả bóng lấy ra cùng màu xanh” và B là biến cố “Hai quả bóng lấy ra là màu đỏ”.
A B là biến cố “Hai quả bóng lấy ra có cùng màu”.
Vì A, B xung khắc nên P(A B) = P(A) + P(B).
Có ; .
Do đó .
Vậy xác suất để hai quả bóng lấy ra cùng màu là .
Lời giải:
Đáp án đúng là: A
Chọn ngẫu nhiên 2 đỉnh trong 8 đỉnh, ta có cách. Suy ra n( ) = 28.
Gọi A là biến cố “ khoảng cách giữa hai đỉnh đó bằng ”.
Để khoảng cách giữa hai đỉnh bằng thì 2 đỉnh cách nhau 1 đỉnh nên có 8 cách.
Suy ra, n(A) = 8.
Do đó .
Bài tập tự luận
a) Tính xác suất của các biến cố AB , và .
b) Hai biến cố A và B có độc lập hay không?
Lời giải:
a) Có P(A B) = P(A) + P(B) – P(AB)
⇒ P(AB) = P(A) + P(B) – P(A B) = 0,5 + 0,7 – 0,8 = 0,4.
Có , suy ra
= 0,7 – 0,4 = 0,3.
Có = 1 – 0,8 = 0,2.
b) Có P(A)P(B) = 0,5 × 0,7 = 0,35 ≠ P(AB) = 0,4 nên A và B không độc lập.
Lời giải:
Từ sơ đồ cây ta có xác suất vệ tinh A phải gửi tin không quá 3 lần là
0,4 + 0,24 + 0,144 = 0,784.
Vậy xác suất vệ tinh A phải gửi tin không quá 3 lần là 0,784.
Lời giải:
Ta có = {(i; j)| 1 ≤ i ≤ 6; 1 ≤ j ≤ 6}, suy ra n( ) = 36.
Gọi A là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc chia hết cho 6”.
Ta có A = {(1; 6); (2; 3); (2; 6); (3; 2); (3; 4); (3; 6); (4; 3); (4; 6); (5; 6); (6; 1); (6; 2); (6; 3); (6; 4); (6; 5); (6; 6)}.
Suy ra n(A) = 15.
Do đó .
Vậy xác suất để tích số chấm xuất hiện trên hai con xúc xắc chia hết cho 6 là .
A: "Cả 4 quả bóng lấy ra có cùng màu";
B: "Trong 4 bóng lấy ra có đủ cả 3 màu".
Lời giải:
+) Gọi A1 là biến cố “4 quả bóng lấy ra có cùng màu xanh”.
A2 là biến cố “4 quả bóng lấy ra có cùng màu đỏ”.
A3 là biến cố “4 quả bóng lấy ra có cùng màu vàng”
A = A1 A2 A3 là biến cố “Cả 4 quả bóng lấy ra có cùng màu”.
Vì A1, A2, A3 xung khắc nên P(A) = P(A1) + P(A2) + P(A3).
Có ; ; .
Do đó .
Vậy xác suất để cả 4 quả bóng lấy ra có cùng màu là .
+) Gọi B1 là biến cố “4 quả bóng lấy ra trong đó có 2 quả bóng màu xanh, 1 quả bóng màu đỏ và 1 quả bóng màu vàng”.
B2 là biến cố “4 quả bóng lấy ra trong đó có 1 quả bóng màu xanh, 2 quả bóng màu đỏ và 1 quả bóng màu vàng”.
B3 là biến cố “4 quả bóng lấy ra trong đó có 1 quả bóng màu xanh, 1 quả bóng màu đỏ và 2 quả bóng màu vàng”.
B = B1 B2 B3 là biến cố “Trong 4 bóng lấy ra có đủ cả 3 màu”.
Vì B1, B2, B3 xung khắc nên P(B) = P(B1) + P(B2) + P(B3).
Có .
.
.
Do đó .
Vậy xác suất để trong 4 bóng lấy ra có đủ cả 3 màu là .
Lời giải:
Cường, Trọng và 6 bạn nữ xếp ngẫu nhiên thành một hàng ngang để chụp ảnh có 8! Cách xếp.
Gọi biến cố A “Cường đứng ở đầu hàng” và biến cố B “Trọng đứng ở đầu hàng”.
Biến cố AB “Cả hai bạn Cường và Trọng cùng đứng đầu hàng”.
Biến cố A B “Có ít nhất một trong hai bạn Cường và Trọng đứng ở đầu hàng”.
Khi đó P(A B) = P(A) + P(B) – P(AB).
Xác suất để Cường đứng ở đầu hàng là P(A) = .
Xác suất để Trọng đứng ở đầu hàng là P(B) = .
Xác suất để cả Cường và Trọng cùng đứng ở đầu hàng là P(AB) = .
Do đó P(A B) = .
Vậy xác suất để có ít nhất một trong hai bạn Cường và Trọng đứng ở đầu hàng là .
Lời giải:
Chọn ngẫu nhiên 3 trong số 24 đỉnh của một đa giác đều 24 cạnh có cách chọn.
Gọi biến cố A “3 đỉnh được chọn là 3 đỉnh của một tam giác cân” và biến cố B “3 đỉnh được chọn là 3 đỉnh của một tam giác vuông”.
Biến cố AB “3 đỉnh được chọn là 3 đỉnh của một tam giác vuông cân”.
Biến cố A ∪ B “3 đỉnh được chọn là 3 đỉnh của một tam giác cân hoặc một tam giác vuông”.
Số tam giác đều được tạo thành từ các đỉnh của một đa giác đều 24 đỉnh là 8 tam giác.
Nhận thấy đường chéo qua tâm đi qua đỉnh tam giác cân sẽ đi qua đỉnh đối diện và đường chéo này là trục đối xứng của tam giác cân nên hai đỉnh còn lại sẽ đối xứng qua trục.
Đường chéo này chia đường tròn thành 2 nửa đường tròn, trên mỗi nửa đường tròn có 11 điểm nên sẽ có 11 cặp điểm đối xứng qua đường chéo, do đó sẽ có 11 tam giác cân tại đỉnh đã chọn (trong đó có 1 tam giác đều).
Vậy số tam giác cân không đều là 24 × 10 = 240 ( tam giác ) .
Số kết quả thuận lợi cho biến cố A là 240 + 8 = 248.
Xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác cân là .
Gọi (O) là đường tròn ngoại tiếp đa giác đều đó.
Mỗi tam giác vuông có 3 đỉnh là 3 đỉnh của đa giác thì cạnh huyền của tam giác vuông phải là đường kính của (O), do đó có 12 cách chọn đường kính.
Với mỗi cách chọn đường kính có 22 cách chọn đỉnh góc vuông (22 đỉnh còn lại của đa giác).
Vậy số tam giác vuông thỏa mãn là 12 × 22 = 264 ( tam giác ) .
Xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác vuông là .
Ứng với mỗi đường kính ta có 2 cách chọn đỉnh sao cho 3 đỉnh tạo thành tam giác vuông cân. Do đó có 12 × 2 = 24 ( tam giác vuông cân ) .
Xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác vuông cân là
Do đó xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác cân hoặc một tam giác vuông là: .
Vậy xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác cân hoặc một tam giác vuông là .
A: "Số được chọn chia hết cho 2 hoặc 7";
B: "Số được chọn có tổng các chữ số là số chẵn".
Lời giải:
Dãy các số tự nhiên có 3 chữ số là 100; 101; 102; …; 999.
Có tất cả số có ba chữ số.
+) Gọi biến cố C “Số được chọn chia hết cho 2” và biến cố D “Số được chọn chia hết cho 7”.
Biến cố CD “Số được chọn chia hết cho cả 2 và 7”.
Biến cố C ∪ D “Số được chọn chia hết cho 2 hoặc 7”.
Khi đó P(C ∪ D) = P(C) + P(D) – P(CD).
Dãy các số có ba chữ số chia hết cho 2 là 100; 102; …; 998.
Có tất cả số có ba chữ số chia hết cho 2.
Do đó .
Dãy các số có ba chữ số chia hết cho 7 là 105; 112; 119; …; 994.
Có tất cả số có ba chữ số chia hết cho 7.
Do đó .
Dãy các số có ba chữ số chia hết cho 2 và 7 là 112; 126; 140; …; 994.
Có tất cả số có ba chữ số chia hết cho 2 và 7.
Do đó P(CD) = .
Suy ra .
Vậy xác suất để số được chọn chia hết cho 2 hoặc 7 là .
+) Gọi biến cố E “Số được chọn có ba chữ số chẵn” và biến cố F “Số được chọn có 1 chữ số chẵn và 2 chữ số lẻ”.
Biến cố E F “Số được chọn có tổng các chữ số là số chẵn”.
Vì E và F xung khắc nên P(E F) = P(E) + P(F).
Gọi số có ba chữ số chẵn có dạng được lập từ các số {0; 2; 4; 6; 8}.
Khi đó ta có 4 cách chọn a, 5 cách chọn b và 5 cách chọn c. Do đó có 4 × 5 × 5 = 100 cách chọn số có ba chữ số chẵn.
Do đó .
Gọi số có ba chữ số có 1 chữ số chẵn và 2 chữ số lẻ có dạng được lập từ các số {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}.
Nếu a là số chẵn, b, c là số lẻ thì có 4 × 5 × 5 = 100 cách chọn.
Nếu a là số lẻ, b là số chẵn, c là số lẻ thì có 5 × 5 × 5 = 125 cách chọn.
Nếu a là số lẻ, b là số lẻ và c là số chẵn thì có 5 × 5 × 5 = 125 cách chọn.
Do đó có 100 + 125 + 125 = 350 cách chọn số có ba chữ số có 1 chữ số chẵn và 2 chữ số lẻ.
Suy ra .
Do đó .
Vậy xác suất để số được chọn có tổng các chữ số là số chẵn là .
Lời giải:
Khi cho lai cá kiếm mắt đen thuần chủng với mắt đỏ thuần chủng, ta được F1 toàn cá kiếm mắt đen, nên tính trạng mắt đen là trội so với tính trạng mắt đỏ.
Ta quy ước A: tính trạng mặt đen, a: tính trạng mắt đỏ.
Ta có sơ đồ lai:
Khi đó ta có xác suất chọn được 2 con đều mắt đỏ là .
Do đó xác suất để có ít nhất 1 con cá mắt đen trong 2 con cá đó là .
Vậy xác suất để có ít nhất 1 con cá mắt đen trong 2 con cá đó là .
Xem thêm Lời giải bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm Lời giải bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 6 trang 98 Toán 11 Tập 2: Cho A và B là hai biến cố thoả mãn P(A) = 0,5; P(B) = 0,7 và P(A ∪ B) = 0,8. a) Tính xác suất của các biến cố AB , và ...
Xem thêm Lời giải bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài tập cuối chương 8 trang 86
Bài 1: Biến cố giao và quy tắc nhân xác suất
Bài 2: Biến cố giao và quy tắc nhân xác suất
Bài 1: Vẽ hình khối bằng phần mềm GeoGebra. Làm kính 3D để quan sát ảnh nổi
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Chân trời sáng tạo (hay nhất)
- Văn mẫu lớp 11 - Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 11 - Chân trời sáng tạo
- Giải SBT Ngữ văn 11 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 11 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Chân trời sáng tạo
- Soạn văn 11 Chân trời sáng tạo (ngắn nhất)
- Giải sgk Tiếng Anh 11 – Friends Global
- Giải sbt Tiếng Anh 11 - Friends Global
- Trọn bộ Từ vựng Tiếng Anh 11 Friends Global đầy đủ nhất
- Bài tập Tiếng Anh 11 Friends Global theo Unit có đáp án
- Giải sgk Vật lí 11 – Chân trời sáng tạo
- Lý thuyết Vật lí 11 – Chân trời sáng tạo
- Giải sbt Vật lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Vật lí 11 – Chân trời sáng tạo
- Giải sgk Hóa học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Hóa học 11 – Chân trời sáng tạo
- Lý thuyết Hóa 11 - Chân trời sáng tạo
- Giải sbt Hóa học 11 – Chân trời sáng tạo
- Giải sgk Sinh học 11 – Chân trời sáng tạo
- Lý thuyết Sinh học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Sinh học 11 – Chân trời sáng tạo
- Giải sbt Sinh học 11 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Chân trời sáng tạo
- Lý thuyết Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sbt Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sgk Lịch sử 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Lịch sử 11 – Chân trời sáng tạo
- Lý thuyết Lịch sử 11 - Chân trời sáng tạo
- Giải sbt Lịch sử 11 – Chân trời sáng tạo
- Giải sgk Địa lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Địa lí 11 – Chân trời sáng tạo
- Lý thuyết Địa lí 11 - Chân trời sáng tạo
- Giải sbt Địa lí 11 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 11 – Chân trời sáng tạo