Bài 11 trang 98 Toán 11 Tập 2 | Chân trời sáng tạo Giải Toán lớp 11
Lời giải Bài 11 trang 98 Toán 11 Tập 2 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.
Giải Toán 11 Bài tập cuối chương 9 trang 98
Bài 11 trang 98 Toán 11 Tập 2: Chọn ngẫu nhiên 3 trong số 24 đỉnh của một đa giác đều 24 cạnh. Tính xác suất của biến cố "3 đỉnh được chọn là 3 đỉnh của một tam giác cân hoặc một tam giác vuông".
Lời giải:
Chọn ngẫu nhiên 3 trong số 24 đỉnh của một đa giác đều 24 cạnh có cách chọn.
Gọi biến cố A “3 đỉnh được chọn là 3 đỉnh của một tam giác cân” và biến cố B “3 đỉnh được chọn là 3 đỉnh của một tam giác vuông”.
Biến cố AB “3 đỉnh được chọn là 3 đỉnh của một tam giác vuông cân”.
Biến cố A ∪ B “3 đỉnh được chọn là 3 đỉnh của một tam giác cân hoặc một tam giác vuông”.
Số tam giác đều được tạo thành từ các đỉnh của một đa giác đều 24 đỉnh là 8 tam giác.
Nhận thấy đường chéo qua tâm đi qua đỉnh tam giác cân sẽ đi qua đỉnh đối diện và đường chéo này là trục đối xứng của tam giác cân nên hai đỉnh còn lại sẽ đối xứng qua trục.
Đường chéo này chia đường tròn thành 2 nửa đường tròn, trên mỗi nửa đường tròn có 11 điểm nên sẽ có 11 cặp điểm đối xứng qua đường chéo, do đó sẽ có 11 tam giác cân tại đỉnh đã chọn (trong đó có 1 tam giác đều).
Vậy số tam giác cân không đều là 24 × 10 = 240 ( tam giác ) .
Số kết quả thuận lợi cho biến cố A là 240 + 8 = 248.
Xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác cân là .
Gọi (O) là đường tròn ngoại tiếp đa giác đều đó.
Mỗi tam giác vuông có 3 đỉnh là 3 đỉnh của đa giác thì cạnh huyền của tam giác vuông phải là đường kính của (O), do đó có 12 cách chọn đường kính.
Với mỗi cách chọn đường kính có 22 cách chọn đỉnh góc vuông (22 đỉnh còn lại của đa giác).
Vậy số tam giác vuông thỏa mãn là 12 × 22 = 264 ( tam giác ) .
Xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác vuông là .
Ứng với mỗi đường kính ta có 2 cách chọn đỉnh sao cho 3 đỉnh tạo thành tam giác vuông cân. Do đó có 12 × 2 = 24 ( tam giác vuông cân ) .
Xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác vuông cân là
Do đó xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác cân hoặc một tam giác vuông là: .
Vậy xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác cân hoặc một tam giác vuông là .
Xem thêm Lời giải bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 6 trang 98 Toán 11 Tập 2: Cho A và B là hai biến cố thoả mãn P(A) = 0,5; P(B) = 0,7 và P(A ∪ B) = 0,8. a) Tính xác suất của các biến cố AB , và ...
Xem thêm Lời giải bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài tập cuối chương 8 trang 86
Bài 1: Biến cố giao và quy tắc nhân xác suất
Bài 2: Biến cố giao và quy tắc nhân xác suất
Bài 1: Vẽ hình khối bằng phần mềm GeoGebra. Làm kính 3D để quan sát ảnh nổi
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Chân trời sáng tạo (hay nhất)
- Văn mẫu lớp 11 - Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 11 - Chân trời sáng tạo
- Giải SBT Ngữ văn 11 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 11 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Chân trời sáng tạo
- Soạn văn 11 Chân trời sáng tạo (ngắn nhất)
- Giải sgk Tiếng Anh 11 – Friends Global
- Giải sbt Tiếng Anh 11 - Friends Global
- Trọn bộ Từ vựng Tiếng Anh 11 Friends Global đầy đủ nhất
- Bài tập Tiếng Anh 11 Friends Global theo Unit có đáp án
- Giải sgk Vật lí 11 – Chân trời sáng tạo
- Lý thuyết Vật lí 11 – Chân trời sáng tạo
- Giải sbt Vật lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Vật lí 11 – Chân trời sáng tạo
- Giải sgk Hóa học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Hóa học 11 – Chân trời sáng tạo
- Lý thuyết Hóa 11 - Chân trời sáng tạo
- Giải sbt Hóa học 11 – Chân trời sáng tạo
- Giải sgk Sinh học 11 – Chân trời sáng tạo
- Lý thuyết Sinh học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Sinh học 11 – Chân trời sáng tạo
- Giải sbt Sinh học 11 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Chân trời sáng tạo
- Lý thuyết Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sbt Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sgk Lịch sử 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Lịch sử 11 – Chân trời sáng tạo
- Lý thuyết Lịch sử 11 - Chân trời sáng tạo
- Giải sbt Lịch sử 11 – Chân trời sáng tạo
- Giải sgk Địa lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Địa lí 11 – Chân trời sáng tạo
- Lý thuyết Địa lí 11 - Chân trời sáng tạo
- Giải sbt Địa lí 11 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 11 – Chân trời sáng tạo