Giải Toán 10 trang 28 Tập 2 | Kết nối tri thức Giải Toán lớp 10
Với giải bài tập Toán lớp 10 trang 28 Tập 2 trong Bài tập cuối chương 6 sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 28 Tập 2.
Giải Toán 10 trang 28 Tập 2
Bài 6.24 trang 28 Toán 10 Tập 2: Tập xác định của hàm số y = là:
Lời giải
Đáp án đúng là: B.
Biểu thức có nghĩa khi x – 2 > 0 ⇔ x > 2.
Vậy tập xác định của hàm số đã cho là D = (2; + ∞).
Bài 6.25 trang 28 Toán 10 Tập 2: Parabol y = – x2 + 2x + 3 có đỉnh là
Lời giải
Đáp án đúng là: D.
Parabol y = – x2 + 2x + 3 có các hệ số: a = – 1; b = 2, c = 3.
Ta có: và y(1) = – 12 + 2 . 1 + 3 = 4.
Vậy tọa độ đỉnh của parabol là I(1; 4).
Bài 6.26 trang 28 Toán 10 Tập 2: Hàm số y = x2 – 5x + 4
A. Đồng biến trên khoảng (1; + ∞).
B. Đồng biến trên khoảng (– ∞; 4).
C. Nghịch biến trên khoảng (– ∞; 1).
D. Nghịch biến trên khoảng (1; 4).
Lời giải
Đáp án đúng là: C.
Hàm số y = x2 – 5x + 4 có các hệ số a = 1 > 0, b = – 5, c = 4.
Ta có: .
Do đó hàm số đã cho nghịch biến trên khoảng và đồng biến trên khoảng .
Mà (– ∞; 1) nên hàm số đã cho nghịch biến trên khoảng (– ∞; 1).
Bài 6.27 trang 28 Toán 10 Tập 2: Bất phương trình x2 – 2mx + 4 > 0 nghiệm đúng với mọi x ∈ ℝ khi
Lời giải
Đáp án đúng là: A.
Xét tam thức bậc hai f(x) = x2 – 2mx + 4 có hệ số a = 1 > 0, ∆' = (– m)2 – 1 . 4 = m2 – 4.
Để f(x) > 0 (cùng dấu với hệ số a) với mọi x ∈ ℝ thì ∆' < 0 hay m2 – 4 < 0.
⇔ m2 < 4 ⇔ – 2 < m < 2.
Trong các đáp án đã cho, ta thấy đáp án m = – 1 là thỏa mãn – 2 < m < 2.
Bài 6.28 trang 28 Toán 10 Tập 2: Tập nghiệm của phương trình là
Lời giải
Đáp án đúng là: C.
Bình phương hai vế của phương trình ta được:
2x2 – 3 = x2 – 2x + 1
⇔ x2 + 2x – 4 = 0
⇔ x = hoặc .
Lần lượt thay các giá trị trên vào phương trình đã cho, ta thấy x = thỏa mãn.
Vậy tập nghiệm của phương trình đã cho là S = .
B. Tự luận
Bài 6.29 trang 28 Toán 10 Tập 2: Tìm tập xác định của các hàm số sau:
Lời giải
a) Biểu thức có nghĩa khi
.
Vậy tập xác định của hàm số đã cho là D = .
b) Biểu thức có nghĩa khi x – 1 > 0 hay x > 1.
Vậy tập xác định của hàm số đã cho là D = (1; + ∞).
Bài 6.30 trang 28 Toán 10 Tập 2: Với mỗi hàm số dưới đây, hãy vẽ đồ thị, tìm tập giá trị, khoảng đồng biến, khoảng nghịch biến của nó:
Lời giải
Các hàm số đã cho đều là hàm số bậc hai nên đồ thị là một parabol.
a) Đồ thị hàm số: y = – x2 + 6x – 9.
Ta có hệ số a = – 1 < 0 nên bề lõm của đồ thị quay xuống dưới.
Parabol trên có:
- Tọa độ đỉnh I(3; 0);
- Trục đối xứng x = 3;
- Giao điểm với trục Oy là điểm (0; – 9), điểm này có điểm đối xứng qua trục đối xứng x = 3 là (6; – 9);
- Lấy các điểm (1; – 4), (5; – 4) thuộc đồ thị hàm số.
Vẽ đường cong đi qua các điểm trên ta được đồ thị hàm số cần vẽ.
Từ đồ thị ta có:
+ Tập giá trị của hàm số là (– ∞; 0].
+ Hàm số đồng biến trên khoảng (– ∞; 3) (do đồ thị hàm số đi lên từ trái sang phải) và nghịch biến trên khoảng (3; + ∞) (do đồ thị hàm số đi xuống từ trái sang phải).
b) Đồ thị hàm số: y = – x2 – 4x + 1.
Ta có: hệ số a = – 1 < 0 nên bề lõm của đồ thị quay xuống dưới.
Parabol trên có:
- Tọa độ đỉnh I(– 2; 5);
- Trục đối xứng x = – 2;
- Giao với trục Oy tại điểm (0; 1), điểm này có điểm đối xứng qua trục đối xứng x = – 2 là (– 4; 1);
- Giao với trục hoành tại hai điểm có hoành độ là nghiệm của phương trình – x2 – 4x + 1 = 0, tức là x = và x = .
Vẽ đường cong đi qua các điểm trên ta được đồ thị hàm số cần vẽ.
Từ đồ thị hàm số ta có:
+ Tập giá trị của hàm số là (– ∞; 5].
+ Hàm số đồng biến trên khoảng (– ∞; – 2) và nghịch biến trên khoảng (– 2; + ∞).
c) Đồ thị hàm số: y = x2 + 4x.
Ta có: hệ số a = 1 > 0 nên bề lõm của đồ thị quay lên trên.
Parabol trên có:
- Tọa độ đỉnh I(– 2; – 4);
- Trục đối xứng x = – 2;
- Cắt trục Oy tại điểm gốc tọa độ O(0; 0);
- Điểm đối xứng với O qua trục đối xứng x = – 2 là điểm (– 4; 0);
- Lấy các điểm (– 1; – 3), (– 3; – 3) thuộc parabol.
Vẽ đường cong đi qua các điểm trên ta được đồ thị cần vẽ.
Từ đồ thị hàm số ta có:
+ Tập giá trị của hàm số là [– 4; + ∞).
+ Hàm số nghịch biến trên khoảng (– ∞; – 2) và đồng biến trên khoảng (– 2; + ∞).
d) Đồ thị hàm số: y = 2x2 + 2x + 1.
Ta có: hệ số a = 2 > 0 nên bề lõm của đồ thị quay lên trên.
Parabol trên có:
- Tọa độ đỉnh I;
- Trục đối xứng x = ;
- Giao với trục Oy tại điểm (0; 1), điểm này có điểm đối xứng qua trục đối xứng x = là (– 1; 1);
- Lấy các điểm (1; 5) và (– 2; 5) thuộc đồ thị.
Vẽ đường cong đi qua các điểm đã cho ta được đồ thị cần vẽ.
Từ đồ thị hàm số ta có:
+ Tập giá trị của hàm số là .
+ Hàm số nghịch biến trên khoảng và đồng biến trên khoảng .
Bài 6.31 trang 28 Toán 10 Tập 2: Xác định parabol (P): y = ax2 + bx + 3 trong mỗi trường hợp sau:
a) (P) đi qua hai điểm A(1; 1) và B(– 1; 0);
b) (P) đi qua điểm M(1; 2) và nhận đường thẳng x = 1 làm trục đối xứng;
Lời giải
Điều kiện: a ≠ 0.
a) (P) đi qua điểm A(1; 1) nên thay tọa độ điểm A vào hàm số y = ax2 + bx + 3 ta được:
1 = a . 12 + b . 1 + 3 ⇔ a + b = – 2 ⇔ a = – 2 – b (1).
(P) đi qua điểm B(– 1; 0) nên thay tọa độ điểm B vào hàm số y = ax2 + bx + 3 ta được:
0 = a . (– 1)2 + b . (– 1) + 3 ⇔ a – b = – 3 ⇔ a = – 3 + b (2).
Từ (1) và (2) suy ra: – 2 – b = – 3 + b ⇔ 2b = 1 ⇔ b = .
Do đó, a = – 2 – = .
Vậy phương trình parabol (P): .
b) (P) đi qua điểm M(1; 2) nên thay tọa độ điểm M vào hàm số y = ax2 + bx + 3 ta được:
2 = a . 12 + b . 1 + 3 ⇔ a + b = – 1 ⇔ a = – 1 – b (3).
(P) nhận đường thẳng x = 1 làm trục đối xứng nên (4).
Từ (3) và (4) suy ra: .
Do đó, a = – 1 – (– 2) = 1.
Vậy phương trình parabol (P): y = x2 – 2x + 3.
c) (P) có đỉnh là I(1; 4) hay (P) đi qua điểm I(1; 4) nên thay tọa độ điểm I vào hàm số y = ax2 + bx + 3 ta được:
4 = a . 12 + b . 1 + 3 ⇔ a + b = 1 ⇔ a = 1 – b (5).
Vì I là đỉnh của (P) nên (6).
Từ (5) và (6) suy ra: 1 – b = .
Do đó, a = 1 – b = 1 – 2 = – 1.
Vậy phương trình parabol (P): y = – x2 + 2x + 3.
Bài 6.32 trang 28 Toán 10 Tập 2: Giải các bất phương trình sau:
Lời giải
a) Tam thức bậc hai f(x) = 2x2 – 3x + 1 có ∆ = (– 3)2 – 4 . 2 . 1 = 1 > 0 nên f(x) có hai nghiệm x1 = và x2 = 1.
Mà hệ số a = 2 > 0 nên ta có bảng xét dấu f(x):
x |
– ∞ 1 + ∞ |
f(x) |
+ 0 – 0 + |
Vậy bất phương trình 2x2 – 3x + 1 > 0 có tập nghiệm là S = .
b) Tam thức bậc hai f(x) = x2 + 5x + 4 có ∆ = 52 – 4 . 1 . 4 = 9 > 0 nên f(x) có hai nghiệm x1 = – 4 và x2 = – 1.
Mà hệ số a = 1 > 0 nên ta có bảng xét dấu f(x):
x |
– ∞ – 4 – 1 + ∞ |
f(x) |
+ 0 – 0 + |
Vậy bất phương trình x2 + 5x + 4 < 0 có tập nghiệm là S = (– 4; – 1).
c) Tam thức bậc hai f(x) = – 3x2 + 12x – 12 có ∆' = 62 – (– 3) . (– 12) = 0 nên f(x) có nghiệm kép x = 2.
Mà hệ số a = – 3 < 0 nên f(x) luôn âm (cùng dấu với a) với mọi x ≠ 2.
Vậy bất phương trình – 3x2 + 12x – 12 ≥ 0 có nghiệm duy nhất x = 2 hay tập nghiệm của bất phương trình là S = {2}.
d) Tam thức bậc hai f(x) = 2x2 + 2x + 1 có ∆' = 12 – 2 . 1 = – 1 < 0, hệ số a = 2 > 0 nên f(x) luôn dương (cùng dấu với a) với mọi x, tức là 2x2 + 2x + 1 > 0 với mọi x ∈ ℝ.
Vậy bất phương trình 2x2 + 2x + 1 < 0 vô nghiệm.
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Bài 19: Phương trình đường thẳng
Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách.
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Soạn văn lớp 10 (ngắn nhất) – Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn lớp 10 - KNTT
- Bố cục tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Văn mẫu lớp 10 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 10 – Kết nối tri thức
- Giải sgk Tiếng Anh 10 Global Success – Kết nối tri thức
- Giải sbt Tiếng Anh 10 Global Success – Kết nối tri thức
- Ngữ pháp Tiếng Anh 10 Global success
- Bài tập Tiếng Anh 10 Global success theo Unit có đáp án
- Trọn bộ Từ vựng Tiếng Anh 10 Global success đầy đủ nhất
- Giải sgk Vật lí 10 – Kết nối tri thức
- Giải sbt Vật lí 10 – Kết nối tri thức
- Giải Chuyên đề Vật lí 10 – Kết nối tri thức
- Lý thuyết Vật lí 10 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 10 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 10 – Kết nối tri thức
- Lý thuyết Hóa học 10 – Kết nối tri thức
- Giải sbt Hóa học 10 – Kết nối tri thức
- Giải Chuyên đề Hóa học 10 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 10 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 10 – Kết nối tri thức
- Giải sbt Sinh học 10 – Kết nối tri thức
- Lý thuyết Sinh học 10 – Kết nối tri thức
- Giải Chuyên đề Sinh học 10 – Kết nối tri thức
- Giải sgk Lịch sử 10 – Kết nối tri thức
- Giải sbt Lịch sử 10 – Kết nối tri thức
- Giải Chuyên đề Lịch sử 10 – Kết nối tri thức
- Lý thuyết Lịch sử 10 - Kết nối tri thức
- Giải sgk Địa lí 10 – Kết nối tri thức
- Lý thuyết Địa Lí 10 – Kết nối tri thức
- Giải sbt Địa lí 10 – Kết nối tri thức
- Giải Chuyên đề Địa lí 10 – Kết nối tri thức
- Giải sgk Công nghệ 10 – Kết nối tri thức
- Lý thuyết Công nghệ 10 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải Chuyên đề Kinh tế và pháp luật 10 – Kết nối tri thức
- Lý thuyết KTPL 10 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sbt Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sgk Tin học 10 – Kết nối tri thức
- Lý thuyết Tin học 10 – Kết nối tri thức
- Giải sbt Tin học 10 – Kết nối tri thức
- Giải Chuyên đề Tin học 10 – Kết nối tri thức
- Giải sgk Giáo dục thể chất 10 – Kết nối tri thức