50 Bài tập Phương pháp quy nạp toán học - Dãy số Toán 11 mới nhất
Với 50 Bài tập Phương pháp quy nạp toán học - Dãy số Toán lớp 11 mới nhất được biên soạn bám sát chương trình Toán 11 giúp các bạn học tốt môn Toán hơn.
Tài liệu gồm: 15 bài tập trắc nghiệm, 15 bài tập tự luận có lời giải và 20 bài tập vận dụng. Mời các bạn đón xem:
Bài tập Phương pháp quy nạp toán học - Dãy số - Toán 11
I. Bài tập trắc nghiệm
Bài 1: Chứng minh bằng phương pháp quy nạp n3 + 11n chia hết cho 6.
Bài 2: Tìm công thức tính số hạng tổng quát un theo n của dãy số sau
A. un = n2 - 3n + 10
B. un = 2n
C. un = 2n
D. un = n + 2
Vậy (*) đúng với n = k + 1. Kết luận (*) đúng với mọi số nguyên dương n.
Chọn đáp án B
Bài 3: Xét tính tăng giảm của dãy số (un) biết:
A. Dãy số giảm.
B. Dãy số không tăng không giảm
C. Dãy số không đổi.
D. Dãy số tăng
Chọn đáp án D
Bài 4: Cho dãy số . Tìm mệnh đề đúng?
A. Dãy số tăng và bị chặn.
B. Dãy số giảm và bị chặn.
C. Dãy số tăng và bị chặn dưới
D. Dãy số giảm và bị chặn trên.
Chọn đáp án A
Bài 5: Xét tính bị chặn của dãy số (un) biết:
A. Dãy số bị chặn trên
B. Dãy số bị chặn dưới.
C. Dãy số bị chặn
D. Tất cả sai.
Chọn đáp án C
Bài 6: Cho dãy số (un) xác định bởi . Tìm số hạng tổng quát un theo n.
A. un = 100 + 2n
B.un = 10n + n
C. un = 100n – n2
D. Đáp án khác
Chọn đáp án B
Bài 7: Xét tính tăng giảm của dãy số (un) với
A. Dãy số tăng
B. Dãy số giảm
C. Dãy số không tăng, không giảm
D. Dãy số không đổi.
Chọn đáp án A
Bài 8: Cho dãy số (un) biết . Mệnh đề nào sau đây đúng?
A. Dãy số tăng
B. Dãy số giảm
C. Dãy số không tăng, không giảm
D. Dãy số là dãy hữu hạn
Chọn đáp án A
Bài 9: Cho dãy số (un) biết . Mệnh đề nào sau đây đúng ?
A. Dãy số bị chặn dưới.
B. Dãy số bị chặn trên.
C. Dãy số bị chặn.
D. Không bị chặn
Chọn đáp án C
Bài 10: Xét tính tăng, giảm và bị chặn của dãy số (un), biết:
A. Dãy số tăng, bị chặn
B. Dãy số giảm, bị chặn
C. Dãy số không tăng không giảm, không bị chặn
D. Cả A, B, C đều sai
Chọn đáp án A
II. Bài tập tự luận có lời giải
Bài 1: Chứng minh rằng với mọi số nguyên n, ta có:
Vậy (1) đúng với n = k + 1. Do đó theo nguyên lí quy nạp, (1) đúng với mọi số nguyên dương n.
Bài 2: Với mỗi số nguyên dương n, gọi un = 9n - 1. Chứng minh rằng với mọi số nguyên dương n thì un luôn chia hết cho 8.
* Ta có u1 = 9.1 - 1 = 8 chia hết cho 8 (đúng với n = 1).
* Giả sử uk = 9k - 1 chia hết cho 8.
Ta cần chứng minh uk + 1 = 9k + 1 - 1 chia hết cho 8.
Thật vậy, ta có:
uk + 1 = 9k + 1 - 1 = 9.9k - 1 = 9(9k - 1) + 8 = 9uk + 8.
Vì 9uk và 8 đều chia hết cho 8, nên uk + 1 cũng chia hết cho 8.
Vậy với mọi số nguyên dương n thì un chia hết cho 8.
Bài 3: Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta luôn có: 2n + 1 > 2n + 3 (*)
* Với n = 2 ta có 2.2+1 > 2.2 + 3 ⇔ 8 > 7 (đúng).
Vậy (*) đúng với n = 2 .
* Giả sử với n = k, k ≥ 2 thì (*) đúng, có nghĩa ta có: 2k + 1 > 2k + 3 (1).
* Ta phải chứng minh (*) đúng với n = k + 1, có nghĩa ta phải chứng minh:
2k + 2 > 2(k + 1) + 3
Thật vậy, nhân hai vế của (1) với 2 ta được:
2.2k + 1 > 2(2k + 3) ⇔ 2k + 2 > 4k + 6 > 2k + 5.
(vì 4k + 6 > 4k + 5 > 2k + 5)
Hay 2k + 2 > 2(k + 1)+ 3
Vậy (*) đúng với n = k + 1.
Do đó theo nguyên lí quy nạp, (*) đúng với mọi số nguyên dương n ≥ 3 .
Bài 4: Tìm công thức tính số hạng tổng quát un theo n của dãy số sau
Bài 5: Xét tính tăng giảm của dãy số (un) biết:
Chọn đáp án B
Bài 6: Xét tính tăng hay giảm và bị chặn của dãy số :
Lời giải:
Chọn đáp án C
Bài 7: Cho dãy số (un) có số hạng tổng quát . Số là số hạng thứ mấy?
Lời giải:
Bài 8: Chứng minh bằng quy nạp:
Vậy (1) đúng khi n= k + 1. Do đó theo nguyên lí quy nạp, (1) đúng với mọi số nguyên dương n.
Bài 9:
Chứng minh rằng với n ∈ N*, ta có các đẳng thức:
a. (1)
b. (2)
c. (3)
Lời giải:
a. Với n = 1, ta có:
VT = 3 – 1 = 2
VP =
Vậy VT = VP (1) đúng với n = 1
Giả thiết (1) đúng với n = k ≥ 1 nghĩa là:
(1a)
Ta chứng minh (1a) đúng với n = k + 1 nghĩa là chứng minh:
(1) đúng với n = k +1, vậy (1a) đúng với
b.
Với n = 1 thì
Vậy (2) đúng với n = 1
Giả sử đẳng thức đúng với n = k, tức là:
Khi đó ta chứng minh (2) đúng với n = k +1
Ta có :
(2) đúng với n = k + 1. Vậy nó đúng với mọi n ∈ N*
c. (3)
Khi n = 1 vế trái bằng 1
Vậy (3) đúng với n = 1
Giả sử đẳng thức (3) đúng với n = k nghĩa là:
(3a)
Ta phải chứng minh (3a) đúng khi n = k + 1
+ Ta cộng 2 vế của (3) cho (k + 1)2
Vậy đẳng thức đúng với n = k + 1. Do đó, đẳng thức đúng với mọi n ∈ N*
Bài 10 Chứng minh rằng với n ∈ N*
a. n3 + 3n2 + 5n chia hết cho 3.
b. chia hết cho 9
c. n3 + 11n chia hết cho 6.
Lời giải:
Đặt An =
+ Ta có: với n = 1
chia hết 3
+ Giả sử với n = k ≥ 1 ta có:
chia hết 3 (giả thiết quy nạp)
+ Ta chứng minh chia hết 3
Thật vậy, ta có:
Theo giả thiết quy nạp chia hết 3, hơn nữa 9(k + 1) chia hết 3
Nên = n3 + 3n2 + 5n chia hết cho 3 với mọi ∀n ∈ N*
b. 4n + 15n – 1 chia hết cho 9
Đặt
với n = 1 => = 4 + 15 – 1 = 18 chia hết 9
+ Giả sử với n = k ≥ 1 ta có:
chia hết 9 (giả thiết quy nạp)
+ Ta chứng minh: chia hết 9
Thật vậy, ta có:
Ak+1 = (4k+1 + 15(k + 1) – 1) = 4k.41 + 15k + 15 – 1
= (4k + 15k – 1) + (3.4k + 15) = Ak + 3(4k + 5)
Theo giả thiết quy nạp chia hết 9, hơn nữa:
3(4k + 5) chia hết 9 ( chứng minh tương tự) ∀k ≥ 1 nên chia hết 9
Vậy An = 4n + 15n – 1 chia hết cho 9 ∀n ∈ N*
c. n3 + 11n chia hết cho 6.
Đặt Un = n3 + 11n
+ Với n = 1 => U1 = 12 chia hết 6
+ Giả sử với n = k ≥ 1 ta có:
chia hết 6 (giả thiết quy nạp)
Ta chứng minh: Uk+1 chia hết 6
Thật vậy ta có:
Uk+1 = (k + 1)3 + 11(k +1) =
+ Theo giả thiết quy nạp thì:
chia hết 6, hơn nữa chia hết 6 ∀k ≥ 1 (2 số liên tiếp nhân với nhau chia hết cho 2)
Do đó: Uk+1 chia hết 6
Vậy: Un = n3 + 11n chia hết cho 6 ∀n ∈ N*
III. Bài tập vận dụng
Bài 1 Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có các bất đẳng thức:
a. 3n > 3n + 1
b. 2n+1 > 2n + 3
Bài 2 Cho tổng với
a. Tính S1, S2, S3
b. Dự đoán công thức tính tổng Sn và chứng minh bằng quy nạp.
Bài 3 Chứng minh rằng số đường chéo của một đa giác lồi n cạnh là
Bài 4 Chứng minh rằng với n Є N*, ta có đẳng thức:
a) 2 + 5+ 8+.... + 3n - 1 = ;
b) ;
c) 12 + 22 + 32 +….+ n2 = .
Bài 5 Chứng minh rằng với n ε N* ta luôn có:
a) n3 + 3n2 + 5n chia hết cho 3;
b) 4n + 15n - 1 chia hết cho 9;
c) n3 + 11n chia hết cho 6.
Bài 6 Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có các bất đẳng thức:
a) 3n > 3n + 1;
b) 2n + 1 > 2n + 3
Bài 7
a) Tính S1, S2, S3.
b) Dự đoán công thức tính tổng Sn và chứng minh bằng quy nạp.
Bài 8 Tìm công thức tính số hạng tổng quát un theo n của dãy số sau
Bài 9 Xét tính tăng giảm của dãy số (un) biết:
Bài 10 Cho dãy số . Tìm mệnh đề đúng?
Xem thêm các bài Bài tập Toán lớp 11 hay, chi tiết khác:
Xem thêm các chương trình khác:
- Giải sgk Hóa học 11 | Giải bài tập Hóa học 11 Học kì 1, Học kì 2 (Sách mới)
- Lý thuyết Hóa học 11(sách mới) | Kiến thức trọng tâm Hóa 11
- Giải sbt Hóa học 11 (sách mới) | Sách bài tập Hóa học 11
- Các dạng bài tập Hóa học lớp 11
- Giáo án Hóa học lớp 11 mới nhất
- Tóm tắt tác phẩm Ngữ văn 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 11 (hay nhất) | Để học tốt Ngữ Văn 11 (sách mới)
- Soạn văn 11 (ngắn nhất) | Để học tốt Ngữ văn 11 (sách mới)
- Tác giả tác phẩm Ngữ văn 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Văn mẫu 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Tiếng Anh 11 (thí điểm)
- Giải sgk Tiếng Anh 11 | Giải bài tập Tiếng anh 11 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Tiếng Anh 11 (sách mới) | Sách bài tập Tiếng Anh 11
- Giải sbt Tiếng Anh 11 (thí điểm)
- Giải sgk Lịch sử 11 | Giải bài tập Lịch sử 11 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Lịch Sử 11(sách mới) | Kiến thức trọng tâm Lịch Sử 11
- Giải Tập bản đồ Lịch sử 11
- Giải sgk Vật Lí 11 | Giải bài tập Vật lí 11 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Vật Lí 11 (sách mới) | Sách bài tập Vật Lí 11
- Lý thuyết Vật Lí 11 (sách mới) | Kiến thức trọng tâm Vật Lí 11
- Các dạng bài tập Vật Lí lớp 11
- Giáo án Vật lí lớp 11 mới nhất
- Giải sgk Sinh học 11 | Giải bài tập Sinh học 11 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Sinh học 11 (sách mới) | Kiến thức trọng tâm Sinh 11
- Giải sgk Giáo dục công dân 11
- Lý thuyết Giáo dục công dân 11
- Lý thuyết Địa Lí 11 (sách mới) | Kiến thức trọng tâm Địa lí 11
- Giải Tập bản đồ Địa Lí 11
- Giải sgk Giáo dục quốc phòng - an ninh 11