50 Bài tập Hàm số liên tục Toán 11 mới nhất
Với 50 Bài tập Hàm số liên tục Toán lớp 11 mới nhất được biên soạn bám sát chương trình Toán 11 giúp các bạn học tốt môn Toán hơn.
Tài liệu gồm: 15 bài tập trắc nghiệm, 15 bài tập tự luận có lời giải và 20 bài tập vận dụng. Mời các bạn đón xem:
Bài tập Hàm số liên tục - Toán 11
I. Bài tập trắc nghiệm
Bài 1: Cho hàm số . Tìm khẳng định đúng trong các khẳng định sau:
A. Chỉ (I) và (III).
B. Chỉ (I) và (II).
C. Chỉ (I).
D. Chỉ (II)
Lời giải:
Chọn đáp án B
Bài 2: Cho hàm số . Tìm k để f(x) gián đoạn tại x= 1.
A. k ≠ ±2.
B. k ≠ 2.
C. k ≠ -2.
D. k ≠ ±1.
Lời giải:
Chọn đáp án A
Bài 3: Cho hàm số . Khẳng định nào sau đây đúng nhất
A. Hàm số liên tục tại x = 1
B. Hàm số liên tục tại mọi điểm
C. Hàm số không liên tục tại x = 1
D. Tất cả đều sai
Lời giải:
Chọn đáp án C
Bài 4: Chọn giá trị f(0) để các hàm số liên tục tại điểm x= 0.
A. 1
B. 2
C. 3
D. 4
Lời giải:
Chọn đáp án A
Bài 5: Cho hàm số . Khẳng định nào sau đây đúng nhất
A. Hàm số liên tục tại x0 = 0
B. Hàm số liên tục tại mọi điểm nhưg gián đoạn tại x0 = 0
C. Hàm số không liên tục tại x0 = 0
D. Tất cả đều sai
Lời giải:
Chọn đáp án A
Bài 6: Cho hàm số . Khẳng định nào sau đây đúng nhất
A. Hàm số liên tục tại x0 = 2
B. Hàm số liên tục tại mọi điẻm
C. Hàm số không liên tục tại x0 = 2
D. Tất cả đều sai
Lời giải:
Chọn đáp án C
Bài 7: Cho hàm số . Tìm m để f(x) liên tục trên [0; +∞) là.
A.
B.
C.
D. 1
Lời giải:
Bài 8: Cho hàm số . Giá trị của a để f(x) liên tục trên R là:
A. 1 và 2.
B. 1 và -1
C. -1 và 2.
D. 1 và -2
Chọn đáp án D
Bài 9: Cho hàm số Kết luận nào sau đây là đúng?
A. Hàm số f(x) liên tục tại điểm x = -2
B. Hàm số f(x) liên tục tại điểm x = 0
C. Hàm số f(x) liên tục tại điểm x = 0,5
D. Hàm số f(x) liên tục tại điểm x = 2
Hàm số đã cho không xác định tại x = 0, x = -2, x = 2 nên không liên tục tại các điểm đó. Hàm số liên tục tại x = 0,5 vì nó thuộc tập xác định của hàm phân thức f(x).
Chọn đáp án C
Bài 10: Cho với x ≠ 0. Phải bổ sung thêm giá trị f(0) bằng bao nhiêu để hàm số f(x) liên tục tại x=0?
Chọn đáp án C
II. Bài tập tự luận có lời giải
Bài 1: Cho hàm số với x ≠ 2 . Giá trị của m để f(x) liên tục tại x =2 là:
Lời giải:
Bài 2: Cho hàm số . Tìm b để f(x) liên tục tại x = 3.
Lời giải:
Bài 3: Cho hàm số . Khẳng định nào sau đây đúng nhất.
Lời giải:
Bài 4: Cho phương trình (1) .Chọn khẳng định đúng?
A. Phương trình (1) có đúng một nghiệm trên khoảng (-1; 3).
B. Phương trình (1) có đúng hai nghiệm trên khoảng (-1; 3).
C. Phương trình (1) có đúng ba nghiệm trên khoảng (-1; 3).
D. Phương trình (1) có đúng bốn nghiệm trên khoảng (-1; 3).
Do đó phương trình có ít nhất 4 ngiệm thuộc khoảng (-1; 3).
Mặt khác phương trình bậc 4 có tối đa bốn nghiệm.
Vậy phương trình có đúng 4 nghiệm thuộc khoảng (-1; 3).
Bài 5: Cho hàm số . Tìm khẳng định đúng trong các khẳng định sau:
A. Chỉ (I).
B. Chỉ (III)
C. Chỉ (I) và (III)
D. Chỉ (II) và (III)
Bài 6: Dùng định nghĩa xét tính liên tục của hàm số f(x) = x3+2x-1 tại x0=3.
Lời giải:
Bài 7
b.Trong biểu thức g(x) ở trên, cần thay số 5 bởi số nào đó để hàm số liên tục tại x0=2.
Lời giải:
Bài 8:
a. Vẽ đồ thị hàm số y= f(x). Từ đó nêu nhận xét vê tính liên tục của hàm sso trên tập xác định của nó.
b. Khẳng định nhận xét trên bằng 1 chứng minh.
Lời giải:
a. Đồ thị hàm số (hình bên). Từ đồ thị ta thấy số gián đoạn tại x = -1.
Cho các hàm số và g(x) = tan(x) + sin(x)
Bài 9 Với mỗi hàm số, hãy xác định các khoảng trên đó hàm liên tục.
Lời giải:
Bài 10: Ý kiến sau đúng hay sai?
"Nếu hàm số y = f(x) liên tục tại điểm x0 và hàm số y = g(x) không liên tục tại x0, thì y = f(x) + g(x) là một hàm số không liên tục tại x0".
Lời giải:
Ý kiến trên đúng, vì y = h(x) = f(x) + g(x) liên tục tại x0 thì h(x) – f(x) = g(x) liên tục tại x0 (theo định lý 2 về hàm số liên tục) trái với giả thiết g(x) không liên tục tại x0.
III. Bài tập vận dụng
Bài 1 Chứng minh rằng phương trình:
a. 2x3 – 6x + 1 = 0 có ít nhất hai nghiệm.
b. cos x = x có nghiệm
Bài 2 Cho hàm số
a) Vẽ đồ thị của hàm số . Từ đó nêu nhận xét về tính liên tục của hàm số trên tập xác định của nó.
b) Khẳng định nhận xét trên bằng một chứng minh.
Bài 3 a. Xét tính liên tục của hàm số tại , biết
.
b. Trong biểu thức xác định ở trên, cần thay số bởi số nào để hàm số liên tục tại .
Bài 4 Cho hàm số và .
Bài 5 Ý kiến sau đúng hay sai ?
"Nếu hàm số liên tục tại điểm còn hàm số không liên tục tại thì
là một hàm số không liên tục tại "
Bài 6 Chứng minh rằng phương trình:
a) có ít nhất hai nghiệm;
b) có nghiệm.
Bài 7 Cho hàm số . Tìm khẳng định đúng trong các khẳng định sau:
Bài 8 Cho hàm số . Tìm k để f(x) gián đoạn tại x= 1
Bài 9 Cho hàm số . Khẳng định nào sau đây đúng nhất
Bài 10 Chọn giá trị f(0) để các hàm số liên tục tại điểm x= 0.
Xem thêm các bài Bài tập Toán lớp 11 hay, chi tiết khác:
Xem thêm các chương trình khác:
- Giải sgk Hóa học 11 | Giải bài tập Hóa học 11 Học kì 1, Học kì 2 (Sách mới)
- Lý thuyết Hóa học 11(sách mới) | Kiến thức trọng tâm Hóa 11
- Giải sbt Hóa học 11 (sách mới) | Sách bài tập Hóa học 11
- Các dạng bài tập Hóa học lớp 11
- Giáo án Hóa học lớp 11 mới nhất
- Tóm tắt tác phẩm Ngữ văn 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 11 (hay nhất) | Để học tốt Ngữ Văn 11 (sách mới)
- Soạn văn 11 (ngắn nhất) | Để học tốt Ngữ văn 11 (sách mới)
- Tác giả tác phẩm Ngữ văn 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Văn mẫu 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Tiếng Anh 11 (thí điểm)
- Giải sgk Tiếng Anh 11 | Giải bài tập Tiếng anh 11 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Tiếng Anh 11 (sách mới) | Sách bài tập Tiếng Anh 11
- Giải sbt Tiếng Anh 11 (thí điểm)
- Giải sgk Lịch sử 11 | Giải bài tập Lịch sử 11 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Lịch Sử 11(sách mới) | Kiến thức trọng tâm Lịch Sử 11
- Giải Tập bản đồ Lịch sử 11
- Giải sgk Vật Lí 11 | Giải bài tập Vật lí 11 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Vật Lí 11 (sách mới) | Sách bài tập Vật Lí 11
- Lý thuyết Vật Lí 11 (sách mới) | Kiến thức trọng tâm Vật Lí 11
- Các dạng bài tập Vật Lí lớp 11
- Giáo án Vật lí lớp 11 mới nhất
- Giải sgk Sinh học 11 | Giải bài tập Sinh học 11 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Sinh học 11 (sách mới) | Kiến thức trọng tâm Sinh 11
- Giải sgk Giáo dục công dân 11
- Lý thuyết Giáo dục công dân 11
- Lý thuyết Địa Lí 11 (sách mới) | Kiến thức trọng tâm Địa lí 11
- Giải Tập bản đồ Địa Lí 11
- Giải sgk Giáo dục quốc phòng - an ninh 11