50 Bài tập Phép biến hình. Phép tịnh tiến Toán 11 mới nhất
Với 50 Bài tập Phép biến hình. Phép tịnh tiến Toán lớp 11 mới nhất được biên soạn bám sát chương trình Toán 11 giúp các bạn học tốt môn Toán hơn.
Tài liệu gồm: 15 bài tập trắc nghiệm, 15 bài tập tự luận có lời giải và 20 bài tập vận dụng. Mời các bạn đón xem:
Bài tập Phép biến hình. Phép tịnh tiến - Toán 11
I. Bài tập trắc nghiệm
Bài 1: Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto (1;1) biến điểm A(0;2) thành A’ và biến điểm B(-2;1) thành B’, khi đó:
A. A’B’ =
B. A’B’ =
C. A’B’ =
D. A’B’ =
Đáp án: A
Phép tịnh tiến theo vecto (1;1) biến A(0; 2) thành A’(1; 3) và biến B(-2; 1) thành B’(-1; 2) ⇒ A’B’ =
Bài 2: Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto (1;0) biến đường thẳng d: x - 1 = 0 thành đường thẳng d’ có phương trình:
A. x - 1 = 0
B. x - 2 = 0
C. x - y - 2 = 0
D. y - 2 = 0
Đáp án: B
Lấy M(x; y) thuộc d; gọi M’(x’; y’) là ảnh của M qua phép tịnh tiến theo vecto (1;0) thì
Thay vào phương trình d ta được x’ – 2 = 0, hay phương trình d’ là x – 2 = 0 .
Bài 3: Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto (3;1) biến đường thẳng d: 12x - 36y + 101 = 0 thành đường thẳng d’ có phương trình:
A. 12x – 36y – 101 = 0
B. 12x + 36y + 101 = 0
C.12x + 36y – 101 = 0
D. 12x – 36y + 101 = 0.
Đáp án: D
Vecto chỉ phương của d có tọa độ (3; 1) cùng phương với vecto nên phép tịnh tiến theo vecto (3;1) biến đường thẳng d thành chính nó.
Bình luận: Nếu không tinh ý nhận ra điều trên, cứ làm bình thường theo quy trình thì sẽ rất lãng phí thời gian.
Bài 4: Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto (-2;-1) biến thành parabol (P): y = x2 thành parabol (P’) có phương trình:
A. y = x2 + 4x - 5
B. y = x2 + 4x + 4
C. y = x2 + 4x + 3
D. y = x2 - 4x + 5
Đáp án: C
Lấy M(x; y) thuộc (P); gọi M’(x’; y’) là ảnh của M qua phép tịnh tiến theo vecto (-2; -1) thì:
thay vào phương trình (P) được y' + 1 = (x'+ 2)2 ⇒ y' = x'2 + 4x' + 3 hay y = x2 + 4x + 3.
Bài 5: Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto (-3;-2) biến đường tròn có phương trình (C): x2 + (y - 1)2 = 1 thành đường tròn (C’) có phương trình:
A. (x - 3)2 + (y + 1)2 = 1
B. (x + 3)2 + (y + 1)2 = 1
C. (x + 3)2 + (y + 1)2 = 4
D. (x - 3)2 + (y - 1)2 = 4
Đáp án: B
Đường tròn (C) có tâm I(0; 1) và bán kính R = 1.
Phép tịnh tiến theo vecto (-3; -2) biến tâm I(0; 1) của (C) thành tâm I’ của (C') có cùng bán kính R’ = R = 1
Ta có
⇒ phương trình (C’) là (x + 3)2 + (y + 1)2 = 1.
Chú ý: Phép tịnh tiến biến đường tròn thành đường tròn có cùng bán kính.
Bài 6: Phép biến hình biến điểm M thành điểm M’ thì với mỗi điểm M có:
A. Ít nhất một điểm M’ tương ứng
B. Không quá một điểm M’ tương ứng
C. Vô số điểm M’ tương ứng
D. Duy nhất một điểm M’ tương ứng
Đáp án: D
Hướng dẫn giải: quy tắc đặt tương ứng mỗi điểm M của mặt phẳng với một điểm xác định duy nhất M’ của mặt phẳng đó gọi là phép biến hình trong mặt phẳng.
Bài 7: Cho tam giác ABC nội tiếp đường trong (O). Qua O kẻ đường thẳng d. Quy tắc nào sau đây là một phép biến hình.
A. Quy tắc biến O thành giao điểm của d với các cạnh tam giác ABC
B. Quy tắc biến O thành giao điểm của d với đường tròn O
C. Quy tắc biến O thành hình chiếu của O trên các cạnh của tam giác ABC
D. Quy tắc biến O thành trực tâm H, biến H thành O và các điểm khác H và O thành chính nó.
Đáp án: D
Các quy tắc A, B, C đều biến O thành nhiều hơn một điểm nên đó không phải là phép biến hình. Quy tắc D biến O thành điểm H duy nhất nên đó là phép biến hình. Chọn đáp án D
Bài 8: Cho hình vuông ABCD có M là trung điểm của BC. Phép tịnh tiến theo vecto biến M thành A thì bằng:
Đáp án: C
Bài 9: Cho tam giác ABC có trực tâm H, nội tiếp đường tròn (O), BC cố định, I là trung điểm của BC. Khi A di động trên (O) thì quỹ tích H là đường tròn (O’) là ảnh của O qua phép tịnh tiến theo vecto bằng:
A.
B.
C. 2
D.
Đáp án: C
Gọi A’ là điểm đối xứng với A qua O. Ta có: BH // A’C suy ra BHCA’ là hình bình hành do đó HA’ cắt BC tại trung điểm I của BC. Mà O là trung điểm của AA’ suy ra OI là đường trung bình của tam giác AHA’ suy ra = 2
Cách 2: Gọi B’ là điểm đối xứng với B qua O, chứng minh AHCB’ là hình bình hành rồi suy ra
Bài 10: Mặt phẳng tọa độ, phép tịnh tiến theo vecto (2; -3) biến đường thẳng d: 2x + 3y - 1 = 0 thành đường thẳng d’ có phương trình
A. 3x + 2y - 1 = 0
B. 2x + 3y + 4 = 0
C. 3x + 2y + 1 = 0
D. 2x + 3y + 1 = 0
Đáp án: B
Phép tịnh tiến theo vecto (2; -3) biến điểm M (x; y) thành điểm M’(x’; y’) thì:
hay vào phương trình d được:
2(x' - 2) + 3(y' + 3) - 1 = 0 ⇒ 2x' + 3y' + 4 = 0
hay 2x + 3y + 4 = 0.
II. Bài tập tự luận có lời giải
Bài 1: Tìm mệnh đề đúng trong các mệnh đề sau:
A. phép tịnh tiến theo vecto biến M thành M’ thì =
B. Phép tịnh tiến là phép đồng nhất khi vecto tịnh tiến là
C. Phép tịnh tiến theo vecto biến M thành M’ và N thành N’ thì tứ giác MNM’N’ là hình bình hành
D. Phép tịnh tiến theo vecto biến đường tròn (O;R) thành đường tròn (O;R)
Đáp án: B
Phương án A. = mới đúng nghĩa. Phương án C. Tứ giác MNN’M’ mới là hình bình hành. Phương án D. phép tịnh tiến theo vecto chi biến đường tròn (O; R) thành đường tròn (O; R) khi vecto tịnh tiến bằng vecto không.
Bài 2: Cho tam giác ABC có trọng tâm G, Gọi D, E, F lần lượt là trung điểm của các cạnh BC, CA, AB. Mệnh đề nào sau đây là sai.
A. T (F) = E
B . (B) = F
C. T2DG→ (A) = G
D. T GA→(D) = G
Đáp án: C
Bài 3: Trong mặt phẳng tọa độ, phép tịnh tiến theo (1;2) biến điểm M (-1; 4) thành điểm M’ có tọa độ là?
Lời giải:
Thay vào công thức:
Bài 4: Trong mặt phẳng tọa độ cho điểm M(-10;1) và điểm M’(3;8). Phép tịnh tiến theo vecto biến M thành M’, thì tọa độ vecto là:
Lời giải:
Ta có: x'- x = 13; y'- y = 7
Bài 5: Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto (0;0) biến điểm A(0;2) thành điểm A’ có tọa độ:
Lời giải:
Đáp án: D
Bài 6: Trong mặt phẳng cho đường thẳng d và M. Dựng hình chiếu vuông góc M’ của điểm M lên đường thẳng d.
Lời giải:
Từ M kẻ đường thẳng vuông góc với d cắt d tại M’
⇒ M’là hình chiếu của M trên đường thẳng d
Bài 7 Cho trước số a dương, với mỗi điểm M trong mặt phẳng, gọi M’ là điểm sao cho MM’ = a. Quy tắc đặt tương ứng điểm M với điểm M’ nêu trên có phải là một phép biến hình không?
Lời giải:
Quy tắc đặt tương ứng điểm M với điểm M’ nêu trên không phải là một phép biến hình vì M’ không phải là điểm duy nhất được xác định trên mặt phẳng
Ví dụ minh họa: a = 4 cm
Bài 8
Lời giải:
Bài 9 Cho tam giác ABC có G là trọng tâm. Dựng ảnh của tam giác ABC qua phép tịnh tiến theo vectơ AG . Dựng điểm D sao cho phép tịnh tiến theo vectơ AG biến D thành A.
Lời giải:
<=> A là trung điểm của đoạn thẳng DG
Bài 10 Trong mặt phẳng tọa độ Oxy cho vectơ = (-1; 2), A(3; 5), B(-1; 1) và đường thẳng d có phương trình x – 2y + 3 = 0.
a. Tìm tọa độ của các điểm A', B' theo thứ tự là ảnh của A, B qua phép tịnh tiến theo vecto v.
b. Tìm tọa độ của điểm C sao cho A là ảnh của C qua phép tịnh tiến theo vectơ .
c. Tìm phương trình của đường thẳng d' là ảnh của d qua phép tịnh tiến theo v.
Lời giải:
a. Gọi tọa độ của A’ là (x’, y’). Theo công thức tọa độ của phép tịnh tiến, ta có:
vecto v = (-1; 2), A(3; 5); A’ = Tv.(A) => x’ = - 1 + 3 => x’ = 2
y’ = 2 + 5 => y’ = 7 => A’(2, 7)
Tương tự, ta tính được B’(-2 ; 3).
b. Gọi tọa độ của C là (x; y). A(3; 5) là ảnh của C qua phép tịnh tiến theo vectơ
c. Vì d’ = Tv.(d) nên d’ // d, do đó để viết phương trình của d’, ta tìm một điểm M ∈ d và ảnh M’ của nó qua phép tịnh tiến theo vectơ và sau đó viết phương trình đường thẳng đi qua M’ và song song với d.
Trong phương trình x – 2y + 3 = 0, cho y = 0 thì x = - 3. Vậy ta được điểm M(-3; 0) thuộc d.
Đường thẳng d có phương trình: x – 2y + 3 = 0
Đường thẳng d’ song song với d có phương trình x – 2y + m =0, d’ đi qua M’ nên:
(-4) – 2.2 + m = 0 <=> m = 8.
Vậy phương trình của d’ là: x - 2y + 8 = 0
III. Bài tập vận dụng
Bài 1 Cho hai đường thẳng a và b song song với nhau. Hãy chỉ ra một phép tịnh tiến biến a thành b. Có bao nhiêu phép tịnh tiến như thế?
Bài 2 Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto(1;0) biến đường thẳng d: x - 1 = 0 thành đường thẳng d’ có phương trình?
Bài 3 Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto (3;1) biến đường thẳng d: 12x - 36y + 101 = 0 thành đường thẳng d’ có phương trình?
Bài 4 Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto (-3;-2) biến đường tròn có phương trình (C): x2 + (y - 1)2 = 1 thành đường tròn (C’) có phương trình?
Bài 5 Cho tam giác ABC nội tiếp đường trong (O). Qua O kẻ đường thẳng d. Quy tắc nào là một phép biến hình?
Bài 6 Cho tam giác ABC có G là trọng tâm. Xác định ảnh của tam giác ABC qua phép tịnh tiến theo vectơ AG biến D thành A .
Bài 7 Cho hai đường thẳng a và b song song với nhau. Hãy chỉ ra một phép tịnh tiến biến a thành b. Có bao nhiêu phép tịnh tiến như thế?
Bài 8 Cho hình vuông ABCD có M là trung điểm của BC. Phép tịnh tiến theo vecto biến M thành A thì bằng?
Bài 9 Mặt phẳng tọa độ, phép tịnh tiến theo vecto (2; -3) biến đường thẳng d: 2x + 3y - 1 = 0 thành đường thẳng d’ có phương trình
Bài 10 Cho tam giác ABC có trọng tâm G, Gọi D, E, F lần lượt là trung điểm của các cạnh BC, CA, AB. Mệnh đề nào sau đây là sai.
Xem thêm các bài Bài tập Toán lớp 11 hay, chi tiết khác:
Xem thêm các chương trình khác:
- Giải sgk Hóa học 11 | Giải bài tập Hóa học 11 Học kì 1, Học kì 2 (Sách mới)
- Lý thuyết Hóa học 11(sách mới) | Kiến thức trọng tâm Hóa 11
- Giải sbt Hóa học 11 (sách mới) | Sách bài tập Hóa học 11
- Các dạng bài tập Hóa học lớp 11
- Giáo án Hóa học lớp 11 mới nhất
- Tóm tắt tác phẩm Ngữ văn 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 11 (hay nhất) | Để học tốt Ngữ Văn 11 (sách mới)
- Soạn văn 11 (ngắn nhất) | Để học tốt Ngữ văn 11 (sách mới)
- Tác giả tác phẩm Ngữ văn 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Văn mẫu 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Tiếng Anh 11 (thí điểm)
- Giải sgk Tiếng Anh 11 | Giải bài tập Tiếng anh 11 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Tiếng Anh 11 (sách mới) | Sách bài tập Tiếng Anh 11
- Giải sbt Tiếng Anh 11 (thí điểm)
- Giải sgk Lịch sử 11 | Giải bài tập Lịch sử 11 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Lịch Sử 11(sách mới) | Kiến thức trọng tâm Lịch Sử 11
- Giải Tập bản đồ Lịch sử 11
- Giải sgk Vật Lí 11 | Giải bài tập Vật lí 11 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Vật Lí 11 (sách mới) | Sách bài tập Vật Lí 11
- Lý thuyết Vật Lí 11 (sách mới) | Kiến thức trọng tâm Vật Lí 11
- Các dạng bài tập Vật Lí lớp 11
- Giáo án Vật lí lớp 11 mới nhất
- Giải sgk Sinh học 11 | Giải bài tập Sinh học 11 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Sinh học 11 (sách mới) | Kiến thức trọng tâm Sinh 11
- Giải sgk Giáo dục công dân 11
- Lý thuyết Giáo dục công dân 11
- Lý thuyết Địa Lí 11 (sách mới) | Kiến thức trọng tâm Địa lí 11
- Giải Tập bản đồ Địa Lí 11
- Giải sgk Giáo dục quốc phòng - an ninh 11