Xét tính chia hết của một tổng hoặc hiệu
-
4168 lượt thi
-
41 câu hỏi
-
50 phút
Danh sách câu hỏi
Câu 3:
22/07/2024Nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì
Chọn A
Câu 4:
22/07/2024Nếu tất cả các thành phần của một hiệu đều chia hết cho cùng một số thì
Chọn C
Câu 6:
22/07/2024Chọn C
Sơ đồ con đường | Lời giải chi tiết |
| Áp dụng dấu hiệu chia hết của một tổng ta có: |
Câu 7:
22/07/2024Chọn D
Sơ đồ con đường | Lời giải chi tiết |
| Áp dụng dấu hiệu chia hết của một tổng ta có: |
Câu 8:
22/07/2024Nếu và thì
Chọn B
Sơ đồ con đường | Lời giải chi tiết |
| Áp dụng dấu hiệu chia hết của một tổng ta có: |
Câu 9:
22/07/2024Nếu và thì
Chọn A
Sơ đồ con đường | Lời giải chi tiết |
| Áp dụng dấu hiệu chia hết của một tổng ta có: |
Câu 10:
22/07/2024Nếu am, bm, cm thì
Chọn A
Sơ đồ con đường | Lời giải chi tiết |
| Áp dụng tính chất chia hết của một tổng ta có: |
Câu 11:
22/07/2024Nếu am, bm, cm thì
Chọn D
Sơ đồ con đường | Lời giải chi tiết |
| Áp dụng tính chất chia hết của một tổng ta có: |
Câu 12:
23/07/2024Nếu am, bm, cm thì
Chọn D
Sơ đồ con đường | Lời giải chi tiết |
| Áp dụng tính chất chia hết của một tổng ta có: am, bm, cm=> (a+b+c)m |
Câu 13:
22/07/2024Áp dụng tính chất chia hết, xét xem mỗi tổng sau có chia hết cho 6 không?
a, 42+54
b, 600+14
Sơ đồ con đường | Lời giải chi tiết |
Áp dụng tính chất chia hết của một tổng.
| a) Áp dụng tính chất chia hết của một tổng ta có:
b) Áp dụng tính chất chia hết của một tổng ta có: |
Câu 14:
22/07/2024Áp dụng tính chất chia hết, xét xem mỗi tổng sau có chia hết cho 6 không?
a, 60+15+3
b, 120+48+20
Sơ đồ con đường | Lời giải chi tiết |
Áp dụng tính chất chia hết của một tổng. | a) Vì b) Vì |
Câu 15:
22/07/2024Nếu và thì a+b chia hết cho số nào?
Sơ đồ con đường | Lời giải chi tiết |
Vì mà nên (a+b). |
Câu 16:
22/07/2024Nếu và b thì a+b chia hết cho số nào?
Sơ đồ con đường | Lời giải chi tiết |
| Vì |
Câu 17:
22/07/2024Chứng tỏ rằng trong hai số tự nhiên liên tiếp, có một số chia hết cho 2.
Sơ đồ con đường | Lời giải chi tiết |
Bước 1. Giả sử trong hai số tự nhiên liên tiếp có một số chia hết cho 2. Bước 2. Chứng minh số tự nhiên còn lại không chia hết cho 2. | Giả sử a là một số tự nhiên chia hết cho 2. Số tự nhiên liền sau của số tự nhiên a là a+1. Vì . Vậy trong hai số tự nhiên liên tiếp, có một số chia hết cho 2. |
Câu 18:
22/07/2024Chứng tỏ rằng trong hai số tự nhiên liên tiếp, có một số chia hết cho 3
Sơ đồ con đường | Lời giải chi tiết |
Bước 1. Giả sử trong hai số tự nhiên liên tiếp có một số chia hết cho 3. Bước 2. Chứng minh số tự nhiên còn lại không chia hết cho 3. | Giả sử a là một số tự nhiên chia hết cho 3. Số tự nhiên liền sau của số tự nhiên a là a+1; a+2. Vì . Vậy trong hai số tự nhiên liên tiếp, có một số chia hết cho 3. |
Câu 19:
22/07/2024Chứng minh rằng D= 45+99+180 chia hết cho 9.
Sơ đồ con đường | Lời giải chi tiết |
| Áp dụng tính chất chia hết của một tổng ta có:
|
Câu 20:
22/07/2024Chứng minh rằng E= 90+180+300+450 chia hết cho 15.
Sơ đồ con đường | Lời giải chi tiết |
| Áp dụng tính chất chia hết của một tổng ta có:
|
Câu 21:
22/07/2024Chứng minh rằng tổng của 5 số tự nhiên liên tiếp chia hết cho 5.
Sơ đồ con đường | Lời giải chi tiết |
| Giả sử 5 số tự nhiên liên tiếp là: a; a+1; a+2; a+3; a+4 Ta có: a+ a+1+ a+2+ a+3+ a+4= 5a+10 Vì Vậy tổng của 5 số tự nhiên liên tiếp chia hết cho 5. |
Câu 22:
22/07/2024Chứng minh rằng tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3.
Sơ đồ con đường | Lời giải chi tiết |
Bước 1. Gọi một số tự nhiên trong ba số tự nhiên dó là . Bước 2. Xác định các số tự nhiên còn lại. (Các số tự nhiên liên tiếp hơn kém nhau 1 đơn vị) Bước 3. Xét tổng | Giả sử ba số tự nhiên liên tiếp đó lần lượt là: a; a+1; a+2 Ta có: a+ a+1+ a+2= (3a+6) Vậy tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3. |
Câu 23:
22/07/2024Chứng tỏ rằng tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4.
Sơ đồ con đường | Lời giải chi tiết |
| Giả sử 4 số tự nhiên liên tiếp lần lượt là: a; a+1; a+2; a+3 Ta có: a+ a+1+ a+2+ a+3= 4a+6 Vậy tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4. |
Câu 24:
22/07/2024Chứng tỏ rằng tổng của 5 số tự nhiên liên tiếp là một số không chia hết cho 5.
Sơ đồ con đường | Lời giải chi tiết |
| Giả sử 5 số tự nhiên liên tiếp lần lượt là: a; a+1; a+2; a+3; a+4 Ta có: a+ a+1+ a+2+ a+3 +a+4 = 5a+10 Vì Vậy tổng của 5 số tự nhiên liên tiếp chia hết cho 5. |
Câu 25:
22/07/2024Tổng +2 có chia hết cho 2 không? Vì sao?
Sơ đồ con đường | Lời giải chi tiết |
| Vì Áp dụng tính chất chia hết của một tổng suy ra . |
Câu 26:
22/07/2024Chứng minh rằng số có dạng bao giờ cũng chia hết cho 37.
Sơ đồ con đường | Lời giải chi tiết |
Bước 1. Viết số thành tổng chuẩn. Bước 2. Thu gọn Bước 3. Đặt thừa số chung. | Ta có: = 100a+10a+a=111a |
Câu 31:
22/07/2024Cho tổng với . Hãy tìm tất cả các giá trị của x để A chia hết cho 3
Sơ đồ con đường | Lời giải chi tiết |
Áp dụng tính chất chia hết của một tổng. | Vì để x. Mà |
Câu 32:
22/07/2024Cho tổng với
Sơ đồ con đường | Lời giải chi tiết |
Áp dụng tính chất chia hết của một tổng. | Vì để x. Mà |
Câu 33:
22/07/2024Cho hiệu với
Sơ đồ con đường | Lời giải chi tiết |
Áp dụng tính chất chia hết của một hiệu. | Vì Mà |
Câu 34:
22/07/2024Cho hiệu với
Sơ đồ con đường | Lời giải chi tiết |
Áp dụng tính chất chia hết của một hiệu. | Vì Mà |
Câu 35:
22/07/2024Cho . Tìm điều kiện của x để A không chia hết cho 9
Sơ đồ con đường | Lời giải chi tiết |
| Ta có không chia hết cho 9 thì Vậy khi . |
Câu 36:
22/07/2024Cho . Tìm điều kiện của x để A chia hết cho 9.
Sơ đồ con đường | Lời giải chi tiết |
| Ta có chia hết cho 9 thì Vậy A khi . |
Câu 37:
22/07/2024Cho tổng A=12+15+21+x với x∈ℕ. Tìm điều kiện của x để A chia hết cho 3.
Sơ đồ con đường | Lời giải chi tiết |
| Ta có: |
Câu 38:
23/07/2024Cho hiệu
Sơ đồ con đường | Lời giải chi tiết |
| Vì chia hết cho 3 thì và |
Câu 39:
22/07/2024Cho hiệu A= 15-x với
Sơ đồ con đường | Lời giải chi tiết |
| Vì không chia hết cho 3 thì và |
Câu 40:
22/07/2024Tìm .
Sơ đồ con đường | Lời giải chi tiết |
Bước 1. Tách. Bước 2. Áp dụng tính chất chia hết của một tổng. Bước 3. Tìm n. | Vì , để thì (tức là 6 phải chia hết cho n) mà nên . |
Câu 41:
22/07/2024Tìm
Sơ đồ con đường | Lời giải chi tiết |
Bước 1. Tách. Bước 2. Áp dụng tính chất chia hết của một tổng. Bước 3. Tìm n+1. Bước 4. Tìm n. | Ta có: Để thì |
Bài thi liên quan
-
Tìm số chưa biết trong đẳng thức A.B=0
-
17 câu hỏi
-
50 phút
-
-
Áp dụng tính chất phân phối của phép nhân phân phối đối với phép cộng
-
24 câu hỏi
-
50 phút
-
-
Áp dụng quy tắc dấu ngoặc để đơn giản biểu thức
-
16 câu hỏi
-
50 phút
-
-
Tập hợp các số nguyên
-
9 câu hỏi
-
50 phút
-
-
Thứ tự trong tập hợp các số nguyên
-
27 câu hỏi
-
50 phút
-
-
Bội và ước của một số nguyên
-
16 câu hỏi
-
50 phút
-
-
Nhân hai số nguyên khác dấu
-
12 câu hỏi
-
50 phút
-
-
Tìm các số nguyên x,y sao cho x.y = a
-
10 câu hỏi
-
20 phút
-
-
Nhân hai số nguyên cùng dấu
-
16 câu hỏi
-
50 phút
-
-
Xét tính chia hết của một tích
-
20 câu hỏi
-
50 phút
-
Có thể bạn quan tâm
- Tập hợp N và tập N*, thứ tự trong tập hợp số tự nhiên (có đáp án) (235 lượt thi)
- Dạng bài tập về Phép cộng và phép nhân trên tập hợp số tự nhiên cực hay (có đáp án) (230 lượt thi)
- Dạng bài tập về Phép trừ và phép chia trên tập hợp số tự nhiên cực hay có đáp án (214 lượt thi)
- Dạng bài tập về Lũy thừa với số mũ tự nhiên cực hay, có lời giải (246 lượt thi)
- Dạng bài tập về Nhân chia hai lũy thừa cùng cơ số cực hay, có lời giải (263 lượt thi)
- Dạng bài tập về Thứ tự thực hiện phép tính cực hay, có lời giải (279 lượt thi)
- Dạng bài tập về Tính chất chia hết của một tổng cực hay, có lời giải (276 lượt thi)
- Dạng bài tập về Dấu hiệu chia hết cho 2, 3, 4, 5, 6, 9, 10, 11 cực hay có đáp án (263 lượt thi)
- Cách tìm ước và bội nhanh nhất, cực hay có đáp án (302 lượt thi)
- Cách Phân tích một số ra thừa số nguyên tố cực hay, có lời giải (238 lượt thi)