Hoạt động khám phá 7 trang 47 Toán 11 Tập 2 | Chân trời sáng tạo Giải Toán lớp 11
Lời giải Hoạt động khám phá 7 trang 47 Toán 11 Tập 2 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.
Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm
Hoạt động khám phá 7 trang 47 Toán 11 Tập 2: Một chuyển động thẳng xác định bởi phương trình s(t) = 2t3 + 4t + 1, trong đó s tính bằng mét và t là thời gian tính bằng giây.
a) Tính vận tốc tức thời v(t) tại thời điểm t.
b) Đạo hàm v'(t) biểu thị tốc độ thay đổi của vận tốc theo thời gian, còn gọi là gia tốc của chuyển động, kí hiệu a(t). Tính gia tốc của chuyển động tại thời điểm t = 2.
Lời giải:
a) Vận tốc tức thời v(t) tại thời điểm t là v(t) = s'(t) = (2t3 + 4t + 1)' = 6t2 + 4.
b) a(t) = v'(t) = (6t2 + 4)' = 12t.
Gia tốc của chuyển động tại thời điểm t = 2 là a(2) = 12×2 = 24 (m/s2).
Xem thêm Lời giải bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Hoạt động khám phá 1 trang 42 Toán 11 Tập 2: a) Dùng định nghĩa tính đạo hàm của hàm số y = x tại điểm x = x0...
Thực hành 1 trang 43 Toán 11 Tập 2: Tính đạo hàm của hàm số y = x10 tại x = −1 và ...
Thực hành 3 trang 43 Toán 11 Tập 2: Tìm đạo hàm của các hàm số: a) tại x = 1; b) tại ...
Thực hành 4 trang 44 Toán 11 Tập 2: Tính đạo hàm của hàm số y = tanx tại ...
Thực hành 5 trang 44 Toán 11 Tập 2: Tính đạo hàm của các hàm số: a) y = 9x tại x = 1; b) y = lnx tại ...
Thực hành 6 trang 46 Toán 11 Tập 2: Tính đạo hàm của các hàm số: a) y = xlog2x; b) y = x3ex...
Hoạt động khám phá 6 trang 46 Toán 11 Tập 2: Cho hàm số u = sinx và hàm số y = u2.
Thực hành 7 trang 47 Toán 11 Tập 2: Tính đạo hàm của các hàm số sau: a) y = (2x3 + 3)2; b) y = cos3x; c) y = log2(x2 + 2)...
Thực hành 8 trang 48 Toán 11 Tập 2: Tính đạo hàm cấp hai của các hàm số sau: a) y = x2 – x; b) y = cosx...
Bài 1 trang 48 Toán 11 Tập 2: Tính đạo hàm của các hàm số sau: a) ;...
Bài 2 trang 49 Toán 11 Tập 2: Tính đạo hàm của các hàm số sau: a) y = sin3x; b) y = cos32x;...
Bài 3 trang 49 Toán 11 Tập 2: Tính đạo hàm của các hàm số sau: a) y = (x2 – x)×2x; b) y = x2log3x; c) y = e3x + 1...
Bài 4 trang 49 Toán 11 Tập 2: Tính đạo hàm cấp hai của các hàm số sau: a) y = 2x4 – 5x2 + 3; b) y = xex...
Xem thêm Lời giải bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 3: Hàm số mũ. Hàm số lôgarit
Bài 4: Phương trình, bất phương trình mũ và lôgarit
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Chân trời sáng tạo (hay nhất)
- Văn mẫu lớp 11 - Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 11 - Chân trời sáng tạo
- Giải SBT Ngữ văn 11 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 11 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Chân trời sáng tạo
- Soạn văn 11 Chân trời sáng tạo (ngắn nhất)
- Giải sgk Tiếng Anh 11 – Friends Global
- Giải sbt Tiếng Anh 11 - Friends Global
- Trọn bộ Từ vựng Tiếng Anh 11 Friends Global đầy đủ nhất
- Bài tập Tiếng Anh 11 Friends Global theo Unit có đáp án
- Giải sgk Vật lí 11 – Chân trời sáng tạo
- Lý thuyết Vật lí 11 – Chân trời sáng tạo
- Giải sbt Vật lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Vật lí 11 – Chân trời sáng tạo
- Giải sgk Hóa học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Hóa học 11 – Chân trời sáng tạo
- Lý thuyết Hóa 11 - Chân trời sáng tạo
- Giải sbt Hóa học 11 – Chân trời sáng tạo
- Giải sgk Sinh học 11 – Chân trời sáng tạo
- Lý thuyết Sinh học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Sinh học 11 – Chân trời sáng tạo
- Giải sbt Sinh học 11 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Chân trời sáng tạo
- Lý thuyết Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sbt Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sgk Lịch sử 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Lịch sử 11 – Chân trời sáng tạo
- Lý thuyết Lịch sử 11 - Chân trời sáng tạo
- Giải sbt Lịch sử 11 – Chân trời sáng tạo
- Giải sgk Địa lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Địa lí 11 – Chân trời sáng tạo
- Lý thuyết Địa lí 11 - Chân trời sáng tạo
- Giải sbt Địa lí 11 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 11 – Chân trời sáng tạo