Giải Tin học 10 Bài 4 (Kết nối tri thức): Hệ nhị phân và dữ liệu số nguyên

Với giải bài tập Tin học 10 Bài 4: Hệ nhị phân và dữ liệu số nguyên sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Tin học 10 Bài 4.

1 7,642 11/10/2024
Tải về


Giải Tin học lớp 10 Bài 4: Hệ nhị phân và dữ liệu số nguyên

Khởi động

Khởi động trang 20 Tin học 10: Trong hệ thập phân, mỗi số có thể được phân tích thành tổng các luỹ thừa của 10 với hệ số của mỗi số hạng chính là các chữ số tương ứng của số đó. Ví dụ: số 513 có thể viết thành: 5 × 102 + 1 × 101 + 3 × 100.

Ta cũng có thể phân tích mỗi số thành tổng của các luỹ thừa của 2, chẳng hạn 13 có thể viết thành: 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 với các hệ số chỉ là 0 hay 1.

Khi đó, có thể thể hiện 13 bởi dãy 1101 được không? Em hãy cho biết việc thể hiện giá trị của một số bằng dãy bit có lợi gì?

Trả lời:

Có thể thể hiện 13 bởi dãy 1101. Việc thể hiện giá trị của một số bằng dãy bit giúp biểu diễn được con số trong máy tính.

1. Hệ nhị phân và biểu diễn số nguyên

Hoạt động

Hoạt động 1 trang 20 Tin học 10: Biểu diễn một số dưới dạng tổng luỹ thừa của 2

Em hãy viết số 19 thành một tổng các luỹ thừa của 2?

Gợi ý: hãy lập danh sách các luỹ thừa của 2 như 16, 8, 4, 2, 1 và tách dần khỏi 19 cho đến hết.

Trả lời:

19 = 24 + 21 + 20

Câu hỏi

Câu hỏi 1 trang 21 Tin học 10: Em hãy đổi các số sau từ hệ thập phân sang hệ nhị phân

a) 13. b) 155. c) 76.

Trả lời:

1310 = 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 = 11012

15510 = 1 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 = 100110112

76 = 1 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20 = 10011002

Câu hỏi 2 trang 21 Tin học 10: Em hãy đổi các số sau từ hệ nhị phân sang hệ thập phân

a) 110011. b) 10011011. c) 1001110.

Trả lời:

a) 110011 = 1 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20 = 51

b) 10011011 = 1 × 27 +0 × 26 + 0 × 25 + 1 ×24 + 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 = 155

c) 1001110 = 1 × 26 + 0 × 25 + 0 ×24 + 1 × 23+ 1 × 22 + 1 × 21 + 0 × 20 = 78

2. Các phép tính số học trong hệ nhị phân

Hoạt động

Hoạt động 2 trang 22 Tin học 10: Hãy chuyển các toán hạng của hai phép tính sau ra hệ nhị phân để chuẩn bị kiểm tra kết quả thực hiện các phép toán trong hệ nhị phân. (Ví dụ: 3 + 4 = 7 sẽ được chuyển thành 11 + 100 = 111).

a) 26 + 27 = 53. b) 5 × 7 = 35.

Trả lời:

a) 26 + 27= 53

00011010 + 00011011 = 00110101

b) 5 × 7 = 35

00000101 × 00000111 = 00100011

Câu hỏi

Câu hỏi trang 23 Tin học 10: Hãy thực hiện các phép tính sau trong hệ nhị phân:

a) 101101 + 11001. b) 100111 × 1011.

Trả lời:

a) 101101 + 11001 = 1000110

b) 100111 × 1011 = 110101101

Luyện tập

Luyện tập 1 trang 23 Tin học 10: Hãy thực hiện các phép tính sau đây theo quy trình Hình 4.4

a) 125 + 7. b) 250 + 75. c) 75 + 112.

Trả lời:

a) 125 + 7 = 01111101 + 00000111 = 10000100 = 132.

b) 250 + 75 = 11111010 + 01001011 = 101000101 = 325.

c) 75 + 112 = 01001011 + 01110000 = 10111011 = 187.

Luyện tập 2 trang 23 Tin học 10: Em hãy thực hiện các phép tính sau đây theo quy trình Hình 4.4

a) 15 × 6. b) 11 × 9. c) 125 × 4.

Trả lời:

a) 15 × 6 = 1111 × 110 = 1010000 = 80.

b) 11 × 9 = 1011 × 1001 = 1011010 = 90.

c) 125 × 4 = 1111101 × 100 = 111110100 = 500.

Vận dụng

Vận dụng 1 trang 23 Tin học 10: Em hãy tìm hiểu trên Internet hoặc các tài liệu khác cách đổi phần thập phân của một số trong hệ thập phân sang hệ đếm nhị phân.

Trả lời:

Cách đổi phần thập phân của một số trong hệ thập phân sang hệ đếm nhị phân: đối với phần lẻ của số thập phân, số lẻ được nhân với 2. Phần nguyên của kết quả sẽ là bit nhị phân, phần lẻ của kết quả lại tiếp tục nhân 2 cho đến khi phần lẻ của kết quả bằng 0.

Ví dụ 1: Chuyển số 0.62510 sang hệ nhị phân

- 0.625 × 2 = 1.25, lấy số 1, phần lẻ 0.25

- 0.25 × 2 = 0.5, lấy số 0, phần lẻ 0.5

- 0.5 × 2 = 1.0, lấy số 1, phần lẻ 0. Kết thúc phép chuyển đổi.

Vậy kết quả 0.62510 = 0.1012

Giải Tin học 10 Bài 4: Hệ nhị phân và dữ liệu số nguyên - Kết nối tri thức (ảnh 1)

Ví dụ 2: Đổi số 9.62510 sang hệ nhị phân

- Phần nguyên 9 đổi sang hệ nhị phân là 1001

- Phần lẻ 0.625 đổi sang hệ nhị phân là 0.101

Vậy số 9.62510 = 1001.1012

Vận dụng 2 trang 23 Tin học 10: Em hãy tìm hiểu mã bù 2 với hai nội dung:

a) Mã bù 2 được lập như thế nào?

b) Mã bù 2 được dùng để làm gì?

Trả lời:

a) Mã bù 2 (tiếng Anh: two's complement) là một số trong hệ nhị phânbù đúng (true complement) của một số khác. Một số bù 2 có được do đảo tất cả các bit có trong số nhị phân (đổi 1 thành 0 và ngược lại) rồi thêm 1 vào kết quả vừa đạt được. Thực chất, số biểu diễn ở dạng bù 2 là số biểu diễn ở bù 1 rồi sau đó cộng thêm 1. Trong quá trình tính toán bằng tay cho nhanh người ta thường sử dụng cách sau: từ phải qua trái giữ 1 đầu tiên và các số còn lại bên trái số 1 lấy đảo lại (chỉ áp dụng cho số có bit cực phải là 1).

b) Mã bù 2 thường được sử dụng để biểu diễn số âm trong máy tính. Theo phương pháp này, bit cực trái (là bit nằm bên trái cùng của byte) được sử dụng làm bit dấu (sign bit - là bit tượng trưng cho dấu của số) với quy ước: nếu bit dấu là 0 thì số là số dương, còn nếu nó là 1 thì số là số âm. Ngoài bit dấu này ra, các bit còn lại được dùng để biểu diễn độ lớn của số.

Lý thuyết Tin học 10 Bài 4: Hệ nhị phân và dữ liệu số nguyên

1. Hệ nhị phân và biểu diễn số nguyên

a) Hệ nhị phân

Hệ nhị phân có các điểm đặc điểm sau:

- Chỉ dùng hai chữ số 0 và 1, các chữ số 0 và 1 gọi là các chữ số nhị phân.

- Mỗi số có thể biểu diễn bởi một dãy các chữ số nhị phân.

- Trong biểu diễn số nhị phân, một chữ số ở một hàng sẽ có giá trị gấp 2 lần chính chữ số đó ở hàng liền kề bên phải.

- Ví dụ: Biểu diễn số 19 trong hệ nhị phân là: 110012

b) Đổi biểu diễn số nguyên dương từ hệ thập phân sang hệ nhị phân

- Cần đổi số tự nhiên N trong hệ thập phân sang số nhị phân có dạng dkdk – 1…d1d0 nghĩa là cần tìm các số dk, dk – 1, …, d1, d0 có giá trị bằng 0 hoặc 1 sao cho:

Lý thuyết Tin học 10 Bài 4: Hệ nhị phân và dữ liệu số nguyên - Kết nối tri thức  (ảnh 1)

- Để tìm các số dk, dk – 1, …, d1, d0 người ta chia liên tiếp N cho 2 để tìm số dư, viết các số dư theo chiều từ dưới lên, ta được số nhị phân cần tìm.

Lý thuyết Tin học 10 Bài 4: Hệ nhị phân và dữ liệu số nguyên - Kết nối tri thức  (ảnh 1)

Hình 1.1: Đổi một số từ hệ thập phân sang hệ nhị phân cần tìm

1910=100112

c) Biểu diễn số nguyên trong máy tính

- Có hai phương pháp để biểu diễn số trong máy tính:

+ Dấu phẩy động: dùng khi tính toán với các số quá lớn, quá nhỏ hoặc không nguyên.

+ Dấu phẩy tĩnh.

- Biểu diễn số nguyên không dấu bằng cách biểu diễn sang hệ nhị phân rồi đưa vào bộ nhớ máy tính.

- Biểu diễn số nguyên có dấu bằng một số cách như mã thuận, mã đảo trái nhất để mã hóa dấu (dấu cộng được mã hóa bởi bit 0, dấu trừ được mã hóa bởi bit 1, phần còn lại mã hóa giá trị tuyệt đối của số).

Ví dụ: 19 có mã là 00010011, -19 có mã là 10010011

2. Các phép tính số học trong nhị phân

a) Bảng cộng và nhân trong hệ nhị phân

- Phép cộng và nhân tương tự trong hệ thập phân

x

y

x + y

x × y

0

0

0

0

0

1

1

0

1

0

1

0

1

1

10

1

Bảng 1: Bảng cộng và nhân trong hệ nhị phân

b) Cộng hai số nhị phân

- Khi phép cộng hai bit có kết quả là 10 thì ghi 0 ở hàng tương ứng dưới tổng và nhớ 1 sang hàng bên trái. Có thể xảy ra trường hợp cộng 2 bit 1 mà phải nhớ từ hàng trước chuyển sang thì kết quả sẽ là 11, khi đó ta ghi 1 ở hàng tương ứng dưới tổng và nhớ 1 sang hàng tiếp theo bên trái.

Ví dụ: Phép cộng hai số nhị phân 11011 và 11010.

Lý thuyết Tin học 10 Bài 4: Hệ nhị phân và dữ liệu số nguyên - Kết nối tri thức  (ảnh 1)

Hình 1.2: Thực hiện phép cộng

c) Nhân hai số nhị phân

Nhân thừa số thứ nhất lần lượt với từng chữ số của thừa số thứ hai, theo thứ tự từ phải sang trái và đặt kết quả căn phải theo đúng vị trí chữ số của thừa số thứ hai, rồi cộng tất cả lại.

Ví dụ: Phép nhân 1101 với 101 trong hệ nhị phân.

Lý thuyết Tin học 10 Bài 4: Hệ nhị phân và dữ liệu số nguyên - Kết nối tri thức  (ảnh 1)

Hình 1.3: Thực hiện phép nhân

Xem thêm lời giải bài tập Tin học lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Bài 5: Dữ liệu lôgic

Bài 6: Dữ liệu âm thanh và hình ảnh

Bài 7: Thực hành sử dụng thiết bị số thông dụng

Bài 8: Mạng máy tính trong cuộc sống hiện đại

Bài 9: An toàn trên không gian mạng

Xem thêm tài liệu Tin học lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Lý thuyết Bài 4: Hệ nhị phân và dữ liệu số nguyên

1 7,642 11/10/2024
Tải về


Xem thêm các chương trình khác: