Giải SBT Toán 10 trang 25 Tập 1 Cánh diều
Với Giải SBT Toán 10 trang 25 Tập 1 trong Bài 1: Bất phương trình bậc nhất hai ẩn Toán lớp 10 Tập 1 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Toán 10 trang 25.
Giải SBT Toán 10 trang 25 Tập 1 Cánh diều
Bài 4 trang 25 SBT Toán 10 Tập 1: Nửa mặt phẳng không bị gạch (không kể d) ở Hình 3 là miền nghiệm của bất phương trình nào sau đây?
A. 3x + y < 3;
B. x + 3y > 3;
C. x + 3y < 3;
D. 3x + y > 3.
Lời giải:
Đáp án đúng là D
Gọi đường thẳng d có dạng: y = ax + b (a ≠ 0)
Đường thẳng d cắt trục Ox tại điểm có tọa độ (1; 0), thay tọa độ này vào phương trình đường thẳng d ta được: 0 = a.1+ b ⇔ a + b = 0 (1).
Đường thẳng d cắt trục Oy tại điểm có tọa độ (0; 3), thay tọa độ này vào phương trình đường thẳng d ta được: 3 = a.0 + b ⇔ b = 3.
Thay b = 3 vào (1) ta được: a + 3 = 0 ⇔ a = – 3 (thỏa mãn).
Khi đó phương trình đường thẳng d là: y = – 3x + 3 hay 3x + y = 3.
Ta có: 3.0 + 0 = 0 < 3 và dựa vào hình vẽ ta thấy điểm (0; 0) không thuộc vào miền nghiệm của bất phương trình đã cho và không kể đường thẳng d nên 3x + y > 3.
Vậy nửa mặt phẳng không bị gạch (không kể d) ở Hình 3 biểu diền miền nghiệm của bất phương trình 3x + y > 3.
Bài 5 trang 25 SBT Toán 10 Tập 1: Nửa mặt phẳng không bị gạch (kể cả d) ở Hình 4 là miền nghiệm của bất phương trình nào sau đây?
A. 2x – y ≤ 0;
B. 2x – y ≥ 0;
C. x – 2y ≥ 0;
D. x – 2y ≤ 0.
Lời giải:
Đáp án đúng là A
Gọi đường thẳng d có dạng: y = ax + b (a ≠ 0)
Đường thẳng d đi qua gốc tọa độ (0; 0), thay tọa độ này vào phương trình đường thẳng d ta được: 0 = a.0 + b ⇔ b = 0 (1).
Đường thẳng d đi qua điểm có tọa độ (1; 2), thay tọa độ này vào phương trình đường thẳng d ta được: 2 = a.1 + b ⇔ a + b = 2.
Mà b = 0 nên a + 0 = 2 ⇔ a = 2 (thỏa mãn).
Khi đó phương trình đường thẳng d là: y = 2x hay 2x – y = 0.
Ta có: 2.0 – 2 = – 2 < 0 và dựa vào hình vẽ ta thấy điểm (0; 2) thuộc vào miền nghiệm của bất phương trình đã cho và kể cả đường thẳng d nên 2x – y ≤ 0.
Vậy nửa mặt phẳng không bị gạch (kể cả d) ở Hình 4 biểu diền miền nghiệm của bất phương trình 2x – y ≤ 0.
Bài 6 trang 25 SBT Toán 10 Tập 1: Cặp số nào sau đây là nghiệm của bất phương trình – 5x + 2y > 10?
a) (– 2; 1);
b) (1; 5);
c) (0; 5).
Lời giải:
a) Thay x = – 2, y = 1 vào bất phương trình – 5x + 2y > 10, ta được:
– 5.(– 2) + 2.1 > 10 ⇔ 12 > 10 (luôn đúng)
Do đó cặp số (– 2; 1) là nghiệm của bất phương trình đã cho.
b) Thay x = 1, y = 5 vào bất phương trình – 5x + 2y > 10, ta được:
– 5.1 + 2.5 > 10 ⇔ 5 > 10 (vô lí)
Do đó cặp số (1; 5) không là nghiệm của bất phương trình đã cho.
c) Thay x = 0, y = 5 vào bất phương trình – 5x + 2y > 10, ta được:
– 5.0 + 2.5 > 10 ⇔ 10 > 10 (vô lí)
Do đó cặp số (0; 5) không là nghiệm của bất phương trình đã cho.
Vậy chỉ có cặp số (– 2; 1) là nghiệm của bất phương trình đã cho.
Bài 7 trang 25 SBT Toán 10 Tập 1: Biểu diễn miền nghiệm của mỗi bất phương trình sau:
a) 3x + 5y < 15;
b) x – 2y ≥ 6;
c) y > – x + 3;
d) y ≤ 4 – 2x.
Lời giải:
a) Biểu diễn miền nghiệm của bất phương trình 3x + 5y < 15 gồm các bước sau:
+) Vẽ đường thẳng d: 3x + 5y = 15:
Đường thẳng d đi qua hai điểm (0; 3) và (5; 0).
+) Lấy điểm O(0; 0), ta có: 3.0 + 5.0 = 0 < 15.
Vậy miền nghiệm của bất phương trình đã cho là nửa mặt phẳng chứa điểm O(0; 0) và không kể đường thẳng d là nửa mặt phẳng tô màu trong hình sau:
b) Biểu diễn miền nghiệm của bất phương trình x – 2y ≥ 6 gồm các bước sau:
+) Vẽ đường thẳng d: x – 2y = 6:
Đường thẳng d đi qua hai điểm (0; – 3) và (6; 0).
+) Lấy điểm O(0; 0), ta có: 0 – 2.0 = 0 < 6.
Vậy miền nghiệm của bất phương trình đã cho là nửa mặt phẳng không chứa điểm O(0; 0) và kể cả đường thẳng d là nửa mặt phẳng tô màu trong hình sau:
c) Biểu diễn miền nghiệm của bất phương trình y > – x + 3 hay x + y > 3 gồm các bước sau:
+) Vẽ đường thẳng d: x + y = 3:
Đường thẳng d đi qua hai điểm (0; 3) và (3; 0).
+) Lấy điểm O(0; 0), ta có: 0 + 0 = 0 < 3.
Vậy miền nghiệm của bất phương trình đã cho là nửa mặt phẳng không chứa điểm O(0; 0) và không kể đường thẳng d là nửa mặt phẳng tô màu trong hình sau:
d) Biểu diễn miền nghiệm của bất phương trình y ≤ 4 – 2x hay 2x + y ≤ 4 gồm các bước sau:
+) Vẽ đường thẳng d: 2x + y = 4:
Đường thẳng d đi qua hai điểm (2; 0) và (0; 4).
+) Lấy điểm O(0; 0), ta có: 2.0 + 0 = 0 ≤ 4 .
Vậy miền nghiệm của bất phương trình đã cho là nửa mặt phẳng chứa điểm O(0; 0) và kể cả đường thẳng d là nửa mặt phẳng tô màu trong hình sau:
Bài 8 trang 25 SBT Toán 10 Tập 1: Nửa mặt phẳng không bị gạch (không kể d) ở mỗi Hình 5a, 5b, 5c là miền nghiệm của bất phương trình nào?
Lời giải:
+) Hình 5b):
Đường thẳng d là đường thẳng song song với trục Ox và đi qua điểm (0; 2) nên phương trình đường thẳng d là y = 2 hay 0.x + 1.y = 2.
Lấy O(0; 0) có 0.0 + 1.0 = 0 < 2.
Quan sát trên Hình 5a) ta thấy điểm O(0; 0) không thuộc nửa mặt phẳng là miền nghiệm của bất phương trình và không kể đường thẳng d nên bất phương trình cần tìm là: y > 2.
Vậy bất phương trình có miền nghiệm được biểu diễn ở Hình 5a) là y > 2.
+) Hình 5b):
Đường thẳng d là đường thẳng song song với trục Oy và đi qua điểm (1; 0) nên phương trình đường thẳng d là x = 1 hay x + 0.y = 1.
Lấy O(0; 0) có 1.0 + 0.0 = 0 < 1.
Quan sát trên Hình 5b) ta thấy điểm O(0; 0) thuộc nửa mặt phẳng là miền nghiệm của bất phương trình và không kể đường thẳng d nên bất phương trình cần tìm là: x < 1.
Vậy bất phương trình có miền nghiệm được biểu diễn ở Hình 5b) là x < 1.
+) Hình 5c):
Gọi phương trình đường thẳng d có dạng: y = ax + b (a ≠ 0)
Đường thẳng d là đường thẳng đi qua hai điểm có tọa độ (– 2; 0) nên thay tọa độ điểm này vào phương trình d ta được: 0 = a.(– 2) + b ⇔ – 2a + b = 0 (1).
Đường thẳng d là đường thẳng đi qua hai điểm có tọa độ (0; – 1) nên thay tọa độ điểm này vào phương trình d ta được: – 1 = a.0 + b ⇔ b = – 1.
Thay b = 0 – 1 vào (1) ta được – 2a + (– 1) = 0 ⇔ a = .
Suy ra phương trình đường thẳng d là y = x – 1 hay x + y = – 1.
Lấy O(0; 0) có .0 + 0 = 0 > – 1.
Quan sát trên Hình 5c) ta thấy điểm O(0; 0) thuộc nửa mặt phẳng là miền nghiệm của bất phương trình và không kể đường thẳng d nên bất phương trình cần tìm là: x + y > – 1.
Vậy bất phương trình có miền nghiệm được biểu diễn ở Hình 5c) là x + y > – 1.
Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Giải SBT Toán 10 trang 24 Tập 1
Giải SBT Toán 10 trang 26 Tập 1
Xem thêm các bài giải sách giáo khoa Toán 10 bộ sách Cánh diều hay, chi tiết khác:
Bài 1 trang 24 SBT Toán 10 Tập 1: Cặp số nào sau đây là nghiệm của bất phương trình – 3x...
Bài 2 trang 24 SBT Toán 10 Tập 1: Miền nghiệm của bất phương trình 2x – 3y > 5 là nửa mặt...
Bài 3 trang 24 SBT Toán 10 Tập 1: Miền nghiệm của bất phương trình x – 2y < 4 được xác...
Bài 4 trang 25 SBT Toán 10 Tập 1: Nửa mặt phẳng không bị gạch (không kể d) ở Hình 3 là...
Bài 5 trang 25 SBT Toán 10 Tập 1: Nửa mặt phẳng không bị gạch (kể cả d) ở Hình 4 là...
Bài 6 trang 25 SBT Toán 10 Tập 1: Cặp số nào sau đây là nghiệm của bất phương trình – 5x ...
Bài 7 trang 25 SBT Toán 10 Tập 1: Biểu diễn miền nghiệm của mỗi bất phương trình sau:...
Bài 8 trang 25 SBT Toán 10 Tập 1: Nửa mặt phẳng không bị gạch (không kể d) ở mỗi Hình...
Bài 9 trang 26 SBT Toán 10 Tập 1: Hà, Châu, Liên và Ngân cùng đi mua trà sữa. Cả bốn...
Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài 2: Tập hợp. Các phép toán trên tập hợp
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Soạn văn lớp 10 (ngắn nhất) – Cánh Diều
- Giải sbt Ngữ văn lớp 10 – Cánh Diều
- Văn mẫu lớp 10 – Cánh Diều
- Giải Chuyên đề học tập Ngữ văn 10 – Cánh diều
- Giải sgk Tiếng Anh 10 – Explore new worlds
- Giải sgk Tiếng Anh 10 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 10 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 i-learn Smart World
- Giải sbt Tiếng Anh 10 - iLearn Smart World
- Giải sgk Vật lí 10 – Cánh Diều
- Giải sbt Vật lí 10 – Cánh Diều
- Lý thuyết Vật lí 10 – Cánh Diều
- Giải Chuyên đề Vật lí 10 – Cánh Diều
- Giải sgk Hóa học 10 – Cánh Diều
- Lý thuyết Hóa học 10 – Cánh Diều
- Giải sbt Hóa học 10 – Cánh Diều
- Giải Chuyên đề Hóa học 10 – Cánh Diều
- Giải sgk Sinh học 10 – Cánh Diều
- Giải sbt Sinh học 10 – Cánh Diều
- Lý thuyết Sinh học 10 – Cánh Diều
- Giải Chuyên đề Sinh học 10 – Cánh diều
- Giải sgk Lịch sử 10 – Cánh Diều
- Giải sbt Lịch sử 10 – Cánh Diều
- Giải Chuyên đề Lịch sử 10 – Cánh Diều
- Lý thuyết Lịch sử 10 – Cánh diều
- Giải sgk Địa lí 10 – Cánh Diều
- Lý thuyết Địa Lí 10 – Cánh Diều
- Giải sbt Địa lí 10 – Cánh Diều
- Giải Chuyên đề Địa lí 10 – Cánh Diều
- Lý thuyết Công nghệ 10 – Cánh Diều
- Giải sgk Công nghệ 10 – Cánh Diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải Chuyên đề Kinh tế pháp luật 10 – Cánh diều
- Lý thuyết KTPL 10 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 10 – Cánh Diều
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Cánh diều
- Giải sbt Giáo dục quốc phòng - an ninh 10 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sgk Tin học 10 – Cánh Diều
- Giải sbt Tin học 10 – Cánh Diều
- Giải Chuyên đề Tin học 10 – Cánh diều
- Lý thuyết Tin học 10 - Cánh diều
- Giải sgk Giáo dục thể chất 10 – Cánh Diều