Chứng minh rằng (11^10) – 1 chia hết cho 100

Với giải Bài tập 6 trang 58 SGK Toán lớp 11 Đại số và Giải tích được biên soạn lời giải chi tiết sẽ giúp học sinh biết cách làm bài tập môn Toán 11. Mời các bạn đón xem:

1 3739 lượt xem


Giải Toán 11 Bài 3: Nhị thức Niu - tơn

Video Bài tập 6 trang 58 SGK Toán lớp 11 Đại số

Bài tập 6 trang 58 SGK Toán lớp 11 Đại số: Chứng minh rằng:

a) 1110 – 1 chia hết cho 100;

b) 101100 – 1 chia hết cho 10 000;

c) 101+10100110100 là một số nguyên.

Lời giải:

Chứng minh rằng (11^10) – 1 chia hết cho 100 (ảnh 1)

Tổng sau cùng là tích của 100 với một tổng nên nó chia hết cho 100 suy ra 1110 – 1  chia hết cho 100 .

Vậy 1110 – 1 chia hết cho 100.

Chứng minh rằng (11^10) – 1 chia hết cho 100 (ảnh 1)

Tổng sau cùng chia hết cho 1002  = 10 000 nên 101100 – 1 chia hết cho 10 000.

c) Ta có:

Chứng minh rằng (11^10) – 1 chia hết cho 100 (ảnh 1)

Chứng minh rằng (11^10) – 1 chia hết cho 100 (ảnh 1)

Xem thêm lời giải bài tập Toán lớp 11 hay, chi tiết khác:

Hoạt động 1 trang 55 SGK Toán lớp 11 Đại số: Khai triển biểu thức (a + b)4 thành tổng các đơn thức...

Hoạt động 2 trang 57 SGK Toán lớp 11 Đại số: Dùng tam giác Pa-xcan, chứng tỏ rằng...

Bài tập 1 trang 57 SGK Toán lớp 11 Đại số: Viết khai triển theo công thức nhị thức Niu-tơn...

Bài tập 2 trang 58 SGK Toán lớp 11 Đại số: Tìm hệ số của x3trong khai triển của biểu thức...

Bài tập 3 trang 58 SGK Toán lớp 11 Đại số: Biết hệ số của x2trong khai triển của (1 – 3x)nlà 90. Tìm n...

Bài tập 4 trang 58 SGK Toán lớp 11 Đại số: Tìm số hạng không chứa x trong khai triển của ...

Bài tập 5 trang 58 SGK Toán lớp 11 Đại số: Từ khai triển của biểu thức (3x – 4)17 thành đa thức...

Lý thuyết Nhị thức Niu-tơn

Trắc nghiệm Nhị Thức Newton có đáp án

1 3739 lượt xem


Xem thêm các chương trình khác: