Bài 3 trang 99 Toán 11 Tập 1 | Chân trời sáng tạo Giải Toán lớp 11

Lời giải Bài 3 trang 99 Toán 11 Tập 1 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 619 30/06/2023


Giải Toán 11 Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian 

Bài 3 trang 99 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi O là giao điểm của AC và BD; M và N lần lượt là trung điểm của SB và SD; P thuộc đoạn SC và không là trung điểm của SC.

a) Tìm giao điểm E của đường thẳng SO và mặt phẳng (MNP).

b) Tìm giao điểm Q của đường thẳng SA và mặt phẳng (MNP).

c) Gọi I, J, K lần lượt là giao điểm của QM và AB, QP và AC, QN và AD. Chứng minh I, J, K thẳng hàng.

Lời giải:

a) Gọi E là giao điểm của SO và MN

Mà MN ⊂ (MNP)

Suy ra SO ∩ (MNP) = {E}.

Bài 3 trang 99 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

b)

Gọi Q là giao điểm của PE và SA

Mà PE ⊂ (MNP)

Suy ra SA ∩ (MNP) = {Q}.

Bài 3 trang 99 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

c)

Ta có: QM ∩ AB = {I};

Mà QM ⊂ (QMN), AB ⊂ (ABCD)

Suy ra I ∈ (QMN) ∩ (ABC) (1)

Ta lại có: QN ∩ AD = {K}

Mà QN ⊂ (QMN), AD ⊂ (ABCD)

Suy ra K ∈ (QMN) ∩ (ABCD ) (2)

Từ (1) và (2) suy ra (QMN) ∩ (ABCD ) = {IM}.

Mặt khác, ta có: QE ∩ AC = {J}

Mà QE ⊂ (QMN), AC ⊂ (ABCD)

Suy ra J ∈ (QMN) ∩ (ABCD )

Do đó J thuộc đường thẳng IM.

Bài 3 trang 99 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

1 619 30/06/2023


Xem thêm các chương trình khác: