Bài 2.4 trang 46 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Lời giải Bài 2.4 trang 46 Toán 11 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 920 03/06/2023


Giải Toán 11 Bài 5: Dãy số

Bài 2.4 trang 46 Toán 11 Tập 1: Trong các dãy số (un) sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?

a) un = n – 1;

b) un=n+1n+2 ;

c) un = sin n;

d) un = (– 1)n – 1 n2.

Lời giải:

a) Ta có: un = n – 1 ≥ 0 với mọi n ∈ ℕ*.

Do đó, dãy số (un) bị chặn dưới với mọi n ∈ ℕ*.

Dãy số (un) không bị chặn trên vì không có số M nào thỏa mãn:

un = n – 1 ≤ M với mọi n ∈ ℕ*.

Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.

b) Ta có: un=n+1n+2=n+21n+2=11n+2 , với mọi n ∈ ℕ*.

Vì 0<1n+213 , ∀ n ∈ ℕ* nên 131n+2<0 ∀ n ∈ ℕ*.

Suy ra 11311n+2<1 hay 23un<1 ∀ n ∈ ℕ*.

Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.

c) Ta có: – 1 ≤ sin n ≤ 1 với mọi n ∈ ℕ*.

Do đó, – 1 ≤ un ≤ 1 với mọi n ∈ ℕ*.

Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.

d) un = (– 1)n – 1 n2

Ta có: (– 1)n – 1 = 1 với mọi n ∈ ℕ* và n lẻ.

(– 1)n – 1 = – 1 với mọi n ∈ ℕ* và n chẵn.

n2 ≥ 0 với mọi n ∈ ℕ*.

Do đó, – 1 . n2 ≤ (– 1)n – 1 n2 ≤ 1 . n2 hay – n2 ≤ un ≤ n2 với mọi n ∈ ℕ*.

Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.

1 920 03/06/2023


Xem thêm các chương trình khác: