Giải Toán 11 trang 51 Kết nối tri thức
Với giải bài tập Toán 11 trang 51 trong Bài 6: Cấp số cộng sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 51.
Giải Toán 11 trang 51
Lời giải:
a) Ta có: công sai của cấp số cộng đã cho là d = 9 – 4 = 5.
Số hạng đầu của cấp số cộng là u1 = 4.
Số hạng thứ 5 của cấp số cộng là u5 = u1 + (5 – 1)d = 4 + 4 . 5 = 24.
Số hạng tổng quát của cấp số cộng là
un = u1 + (n – 1)d = 4 + (n – 1) . 5 = 4 + 5n – 5 = 5n – 1 hay un = 5n – 1.
Số hạng thứ 100 của cấp số cộng là u100 = 5 . 100 – 1 = 499.
b) Ta có: công sai của cấp số cộng đã cho là d = – 1 – 1 = – 2.
Số hạng đầu của cấp số cộng là u1 = 1.
Số hạng thứ 5 của cấp số cộng là u5 = u1 + (5 – 1)d = 1 + 4 . (– 2) = – 7.
Số hạng tổng quát của cấp số cộng là
un = u1 + (n – 1)d = 1 + (n – 1) . (– 2) = 1 – 2n + 2 = – 2n + 3 hay un = – 2n + 3.
Số hạng thứ 100 của cấp số cộng là u100 = (– 2) . 100 + 3 = – 197.
Lời giải:
a) un = 3 + 5n
+) Năm số hạng đầu của dãy số (un) là:
u1 = 3 + 5 . 1 = 8;
u2 = 3 + 5 . 2 = 13;
u3 = 3 + 5 . 3 = 18;
u4 = 3 + 5 . 4 = 23;
u5 = 3 + 5 . 5 = 28.
+) Ta có: un – un – 1 = (3 + 5n) – [3 + 5(n – 1)] = 5, với mọi n ≥ 2.
Do đó dãy số (un) là một cấp số cộng với số hạng đầu u1 = 8 và công sai d = 5.
Số hạng tổng quát của cấp số cộng này là un = u1 + (n – 1)d = 8 + (n – 1). 5.
b) un = 6n – 4
+) Năm số hạng đầu của dãy số (un) là:
u1 = 6 . 1 – 4 = 2;
u2 = 6 . 2 – 4 = 8;
u3 = 6 . 3 – 4 = 14;
u4 = 6 . 4 – 4 = 20;
u5 = 6 . 5 – 4 = 26.
+) Ta có: un – un – 1 = (6n – 4) – [6(n – 1) – 4] = 6, với mọi n ≥ 2.
Do đó dãy số (un) là một cấp số cộng với số hạng đầu u1 = 2 và công sai d = 6.
Số hạng tổng quát của cấp số cộng này là un = u1 + (n – 1)d = 2 + (n – 1). 6.
c) u1 = 2, un = un – 1 + n
+) Năm số hạng đầu của dãy số (un) là:
u1 = 2;
u2 = u1 + 2 = 2 + 2 = 4;
u3 = u2 + 3 = 4 + 3 = 7;
u4 = u3 + 4 = 7 + 4 = 11;
u5 = u4 + 5 = 11 + 5 = 16.
Ta có: un = un – 1 + n ⇔ un – un – 1 = n, do n luôn thay đổi nên hiệu hai số hạng liên tiếp của dãy số (un) thay đổi.
Vậy dãy số (un) không phải là cấp số cộng.
d) u1 = 2, un = un – 1 + 3
+) Năm số hạng đầu của dãy số (un) là:
u1 = 2;
u2 = u1 + 3 = 2 + 3 = 5;
u3 = u2 + 3 = 5 + 3 = 8;
u4 = u3 + 3 = 8 + 3 = 11;
u5 = u4 + 3 = 11 + 3 = 14.
Ta có: un = un – 1 + 3 ⇔ un – un – 1 = 3, với mọi n ≥ 2.
Do đó dãy số (un) là một cấp số cộng với số hạng đầu u1 = 2 và công sai d = 3.
Số hạng tổng quát của cấp số cộng này là un = u1 + (n – 1)d = 2 + (n – 1). 3.
Lời giải:
Ta biểu diễn số hạng thứ 5 và số hạng thứ 12 theo số hạng thứ nhất u1 và công sai d.
Ta có: u5 = u1 + (5 – 1)d hay 18 = u1 + 4d.
u12 = u1 + (12 – 1)d hay 32 = u1 + 11d.
Khi đó ta có hệ phương trình .
Số hạng thứ 50 của cấp số cộng là u50 = u1 + (50 – 1)d = 10 + 49 . 2 = 108.
Lời giải:
Cấp số cộng có u1 = 5 và d = 2. Giả sử tổng của n số hạng đầu bằng 2 700. Khi đó ta có:
Sn = .
Do đó,
⇔ n(10 + 2n – 2) = 5 400
⇔ n(2n + 8) – 5 400 = 0
⇔ 2n2 + 8n – 5 400 = 0
Vậy tổng của 50 số hạng đầu của cấp số cộng đã cho bằng 2 700.
Lời giải:
Giá của chiếc xe ô tô sau một năm sử dụng là 680 – 55 = 625 (triệu đồng)
Giá của chiếc xe ô tô sau mỗi năm sử dụng lập thành một cấp số cộng với số hạng đầu là u1 = 625 và công sai d = – 55 (do giá xe giảm).
Do đó, giá của chiếc ô tô sau 5 năm sử dụng là
u5 = u1 + (5 – 1)d = 625 + 4 . (– 55) = – 405 (triệu đồng).
Lời giải:
Số ghế ở mỗi hàng của hội trường lập thành một cấp số cộng với số hạng đầu u1 = 15 và công sai d = 3. Giả sử cần thiết kế tối thiếu n hàng ghế để hội trường có sức chứa ít nhất 870 ghế ngồi.
Ta có: Sn =
Do đó, n(30 + 3n – 3) ≥ 1 740
⇔ n(3n + 27) – 17 40 ≥ 0
⇔ 3n2 + 27n – 1 740 ≥ 0
Vậy cần thiết kế tối thiểu 20 hàng ghế để thỏa mãn yêu cầu bài toán.
Lời giải:
Ta có: 1,2 triệu người = 1 200 nghìn người.
Dân số mỗi năm của thành phố từ năm 2020 đến năm 2030 lập thành một cấp số cộng, gồm 11 số hạng (2030 – 2020 + 1 = 11), với số hạng đầu u1 = 1 200 và công sai d = 30.
Ta có: u11 = u1 + (11 – 1)d = 1 200 + 10 . 30 = 1 500.
Vậy dân số của thành phố này vào năm 2030 khoảng 1 500 nghìn người hay 1,5 triệu người.
Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:
Câu hỏi trang 48 Toán 11 Tập 1: Dãy số không đổi a, a, a, ... có phải là một cấp số cộng không...
HĐ2 trang 49 Toán 11 Tập 1: Cho cấp số cộng (un) với số hạng đầu u1 và công sai d...
HĐ3 trang 50 Toán 11 Tập 1: Cho cấp số cộng (un) với số hạng đầu u1 và công sai d.
Để tính tổng của n số hạng đầu...
Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Kết nối tri thức - hay nhất
- Văn mẫu lớp 11 - Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn 11 – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn 11 - Kết nối tri thức
- Giải SBT Ngữ văn 11 – Kết nối tri thức
- Bố cục tác phẩm Ngữ văn 11 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 11 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Kết nối tri thức
- Soạn văn 11 Kết nối tri thức (ngắn nhất)
- Bài tập Tiếng Anh 11 Global success theo Unit có đáp án
- Giải sgk Tiếng Anh 11 – Global success
- Giải sbt Tiếng Anh 11 - Global Success
- Trọn bộ Từ vựng Tiếng Anh 11 Global success đầy đủ nhất
- Ngữ pháp Tiếng Anh 11 Global success
- Giải sgk Vật lí 11 – Kết nối tri thức
- Lý thuyết Vật lí 11 – Kết nối tri thức
- Giải sbt Vật lí 11 – Kết nối tri thức
- Giải Chuyên đề học tập Vật lí 11 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 11 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Hóa học 11 – Kết nối tri thức
- Lý thuyết Hóa 11 - Kết nối tri thức
- Giải sbt Hóa học 11 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 11 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 11 – Kết nối tri thức
- Lý thuyết Sinh học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Sinh học 11 – Kết nối tri thức
- Giải sbt Sinh học 11 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Kết nối tri thức
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Kết nối tri thức
- Lý thuyết Kinh tế pháp luật 11 – Kết nối tri thức
- Giải sbt Kinh tế pháp luật 11 – Kết nối tri thức
- Giải sgk Lịch sử 11 – Kết nối tri thức
- Giải Chuyên đề học tập Lịch sử 11 – Kết nối tri thức
- Lý thuyết Lịch sử 11 - Kết nối tri thức
- Giải sbt Lịch sử 11 – Kết nối tri thức
- Giải sgk Địa lí 11 – Kết nối tri thức
- Giải Chuyên đề học tập Địa lí 11 – Kết nối tri thức
- Lý thuyết Địa lí 11 - Kết nối tri thức
- Giải sbt Địa lí 11 – Kết nối tri thức
- Giải sgk Công nghệ 11 – Kết nối tri thức
- Lý thuyết Công nghệ 11 - Kết nối tri thức
- Giải sbt Công nghệ 11 – Kết nối tri thức
- Giải sgk Tin học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Tin học 11 – Kết nối tri thức
- Lý thuyết Tin học 11 - Kết nối tri thức
- Giải sbt Tin học 11 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng an ninh 11 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 11 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 11 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 11 – Kết nối tri thức