Giải Toán 11 trang 49 Kết nối tri thức

Với giải bài tập Toán 11 trang 49 trong Bài 6: Cấp số cộng sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 49.

1 139 03/06/2023


Giải Toán 11 trang 49

Luyện tập 1 trang 49 Toán 11 Tập 1Cho dãy số (un) với un = – 2n + 3. Chứng minh rằng (un) là một cấp số cộng. Xác định số hạng đầu và công sai của cấp số cộng này.

Lời giải:

Ta có: un – 1 = – 2(n – 1) + 3 = – 2n + 2 + 3 = – 2n + 5

Do đó, un – un – 1 = (– 2n + 3) – (– 2n + 5) = – 2, với mọi n ≥ 2.

Vậy dãy số (un) là cấp số cộng có số hạng đầu là u1 = – 2 . 1 + 3 = 1 và công sai d = – 2.

HĐ2 trang 49 Toán 11 Tập 1:

Cho cấp số cộng (un) với số hạng đầu u1 và công sai d.

a) Tính các số hạng u2, u3, u4, u5 theo u1 và d.

b) Dự đoán công thức tính số hạng tổng quát un theo u1 và d.

Lời giải:

a) Ta có: u2 = u1 + d;

u3 = u2 + d = (u1 + d) + d = u1 + 2d;

u4 = u3 + d = (u1 + 2d) + d = u1 + 3d;

u5 = u4 + d = (u1 + 3d) + d = u1 + 4d.

b)Từ câu a, ta dự đoán công thức tính số hạng tổng quát un theo u1 và d là

un = u1 + (n – 1)d.

Luyện tập 2 trang 49 Toán 11 Tập 1Cho dãy số (un) với un = 4n – 3. Chứng minh rằng (un) là một cấp số cộng. Xác định số hạng đầu u1 và công sai d của của cấp số cộng này. Từ đó viết số hạng tổng quát u dưới dạng un = u1 + (n – 1)d.

Lời giải:

Ta có: un – un – 1 = (4n – 3) – [4(n – 1) – 3] = 4n – 3 – (4n – 4 – 3) = 4, với mọi n ≥ 2.

Do đó, dãy số (un) là một cấp số cộng với số hạng đầu u1 = 4 . 1 – 3 = 1 và công sai d = 4.

Số hạng tổng quát là: un = 1 + (n – 1) . 4

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết khác: 

Giải Toán 11 trang 48

Giải Toán 11 trang 49

Giải Toán 11 trang 50

Giải Toán 11 trang 51

1 139 03/06/2023


Xem thêm các chương trình khác: