Sách bài tập Toán 10 Bài 2 (Chân trời sáng tạo): Giải bất phương trình bậc hai một ẩn
Với giải sách bài tập Toán 10 Bài 2: Giải bất phương trình bậc hai một ẩn sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 Bài 2.
Giải sách bài tập Toán lớp 10 Bài 2: Giải bất phương trình bậc hai một ẩn - Chân trời sáng tạo
Giải SBT Toán 10 trang 13 Tập 2
Bài 1 trang 13 SBT Toán 10 Tập 2: x = 2 là một nghiệm của bất phương trình nào sau đây?
Lời giải:
a) Thay x = 2 vào bất phương trình ta được: 22 – 3.2 +1 = –1 < 0.
Vì vậy x = 2 không là nghiệm của bất phương trình .
b) Thay x = 2 vào bất phương trình ta được: –4.22 – 3.2 +5 = –17 < 0.
Vì vậy x = 2 là nghiệm của bất phương trình .
c) Thay x = 2 vào bất phương trình ta được: 2.22 – 5.2 + 2 = 0 ≤ 0
Vì vậy x = 2 là nghiệm của bất phương trình .
a)
b)
c)
d)
e)
g)
Lời giải:
a)
Đồ thị hàm số bậc hai nằm phía trên trục hoành với ;
Đồ thị hàm số bậc hai cắt trục hoành tại hai điểm x = và x = 1.
Do đó f(x) ≥ 0 khi .
Vậy tập nghiệm của bất phương trình f(x) ≥ 0 là S = .
b) Đồ thị hàm số bậc hai nằm phía trên trục hoành với mọi x ∈ ℝ hay f(x) > 0 với mọi x ∈ ℝ.
Do đó f(x) < 0 vô nghiệm.
Vậy tập nghiệm của bất phương trình f(x) < 0 là S = ∅.
c) Đồ thị hàm số bậc hai nằm phía trên trục hoành với x < 3 hoặc x > 4.
Do đó f(x) > 0 khi x < 3 hoặc x > 4.
Vậy tập nghiệm của bất phương trình f(x) > 0 là S =
d) Đồ thị hàm số bậc hai nằm phía dưới trục hoành với mọi x ≠ – 1.
Do đó f(x) < 0 khi x ≠ – 1.
Vậy tập nghiệm của bất phương trình f(x) < 0 là S =
e) Đồ thị hàm số bậc hai nằm trên trục hoành với mọi x ≠ .
Đồ thị hàm số bậc hai cắt trục hoành tại điểm x = .
Do đó khi x = .
Vậy tập nghiệm của bất phương trình là S = .
g) Đồ thị hàm số bậc hai nằm phía trên trục hoành với x < và x > ;
Đồ thị hàm số bậc hai cắt trục hoành tại hai điểm x = và x = .
Do đó khi x ≤ và x ≥ .
Vậy tập nghiệm của bất phương trình f(x) ≥ 0 là S = .
Giải SBT Toán 10 trang 14 Tập 2
Bài 3 trang 14 SBT Toán 10 Tập 2: Giải các bất phương trình bậc hai sau:
Lời giải:
a) Tam thức bậc hai f (x) = –9x2 + 16x + 4 có a = – 9 < 0 và ∆ = 162 – 4.( – 9).4 = 112 > 0. Do đó f(x) có hai nghiệm phân biệt là x1 = 2 và x2 =
Áp dụng định lí về dấu tam thức bậc hai ta có:
khi x ≤ hoặc x ≥ 2.
Vậy tập nghiệm của bất phương trình là S = .
b) Tam thức bậc hai f (x) = có a = 6 > 0 và ∆ = ( –13)2 – 4.6.( –33) = 961 > 0. Do đó f(x) có hai nghiệm phân biệt là x1 = và x2 =
Áp dụng định lí về dấu tam thức bậc hai ta có:
< 0 khi < x <
Vậy tập nghiệm của bất phương trình là S = .
c) Tam thức bậc hai f ( x ) = có a = 7 > 0 và 2∆ = ( –36)2 – 4.7.5 = 1156 > 0. Do đó f(x) có hai nghiệm phân biệt là x1 = và x2 = 5
Áp dụng định lí về dấu tam thức bậc hai ta có:
khi ≤ x ≤ 5
Vậy tập nghiệm của bất phương trình là S = .
d) Tam thức bậc hai f ( x ) = có a = –9 < 0 và ∆ = 62 – 4.( –9).( –1) = 0. Do đó f(x) có nghiệm x =
Áp dụng định lí về dấu tam thức bậc hai ta có:
khi x =
Vậy tập nghiệm của bất phương trình là S = .
e) Tam thức bậc hai f ( x ) = = ( 7x + 4 )2
Tam thức bậc hai có nghiệm x =
Áp dụng định lí về dấu tam thức bậc hai ta có:
khi x ≠
Vậy tập nghiệm của bất phương trình là S =
g)
Tam thức bậc hai f ( x ) = có ∆ = 32 – 4. ( –2 ). ( –2 ) = –7 < 0 nên f(x) vô nghiệm.
Áp dụng định lí về dấu tam thức bậc hai ta có a = –2 < 0 nên
với mọi x ∈ ℝ.
Vậy với mọi x ∈ ℝ.
Bài 4 trang 14 SBT Toán 10 Tập 2: Giải các bất phương trình bậc hai sau:
Lời giải:
a) Ta có: ⟺ x2 – 3x – 4 < 0
Xét tam thức bậc hai f(x) = x2 – 3x – 4 có ∆ = (– 3)2 – 4.1.(– 4) = 25 > 0 nên f(x) có hai nghiệm phân biệt x1 = 4 và x2 = –1.
Ta có: a = 1 > 0 nên f ( x ) < 0 với –1 < x < 4.
Suy ra x2 – 3x – 4 < 0 hay với –1 < x < 4.
Vậy bất phương trình đã cho có tập nghiệm khi S = (–1 ; 4).
b) Ta có: 0 < 2x2 – 11x – 6 ⇔ 2x2 – 11x – 6 > 0
Tam thức bậc hai f( x ) = 2x2 – 11x – 6 có ∆ = (– 11)2 – 4.2.(– 6) = 169 > 0 nên f(x) có hai nghiệm phân biệt x1 = 6 và x2 = ,
Ta lại có: a = 2 > 0 nên f ( x ) > 0 khi x < hoặc x > 6.
Vậy tập nghiệm của bất phương trình là: S = (– ∞; ) ∪ (6; +∞).
c)
⟺ –2.( 4x2 + 12x + 9 ) + 4x + 30 ≤ 0
⟺ –8x2 – 24x – 18 + 4x + 30 ≤ 0
⟺ –8x2 – 20x + 12 ≤ 0
⟺ –2x2 – 5x + 3 ≤ 0
Tam thức bậc hai f ( x ) = –2x2 – 5x + 3 có ∆ = (– 5)2 – 4.(– 2).3 = 49 nên f(x) có hai nghiệm phân biệt x1 = –3 và x2 = ,
Ta lại có a = –2 < 0 nên f ( x ) ≤ 0 khi x ≤ –3 hoặc x ≥
Vậy bất phương trình đã cho có tập nghiệm là S = (–∞ ; –3] ∪ [; +∞).
d)
⟺ –4x2 + 20x – 25 ≤ 0
Tam thức bậc hai f ( x ) = –4x2 + 20x – 25 có ∆ = 202 – 4. ( –4 ) . ( – 25 ) = 0 ,
a = –4 < 0 nên f ( x ) ≤ 0 với mọi x ∈ ℝ.
Suy ra –4x2 + 20x – 25 ≤ 0 với mọi x ∈ ℝ.
Vậy với mọi x ∈ ℝ.
e)
⟺ 2x2 – 4x + 2 ≥ 3x2 + 6x + 27
⟺ –x2 – 10x – 25 ≥ 0
⟺ –( x + 5 )2 ≥ 0
⟺ x = –5 ( do –( x + 5 )2 ≤ 0 với mọi x ∈ ℝ)
Vậy khi x = –5
g)
⇔ 2(x2 + 2x + 1) – 9x + 18 < 0
⇔ 2x2 – 5x + 20 < 0
Tam thức bậc hai f ( x ) = 2x2 – 5x + 20 có ∆ = (– 5)2 – 4. 2 . 20 = –135 < 0,
Ta lại có a = 2 > 0 nên f ( x ) > 0 với mọi x ∈ ℝ.
Suy ra 2x2 – 5x + 20 > 0 với mọi x ∈ ℝ.
Vậy không tồn tại x thỏa mãn .
Bài 5 trang 14 SBT Toán 10 Tập 2: Tìm tập xác định của các hàm số sau:
Lời giải:
a) Hàm số xác định khi và chỉ khi 15x2 + 8x – 12 ≥ 0
Tam thức bậc hai f ( x ) = 15x2 + 8x – 12 có ∆ = 82 – 4.15. (–12) = 784 > 0 suy ra f(x) có hai nghiệm phân biệt x1 = và x2 = .
Ta có: a = 15 > 0 nên f ( x ) ≥ 0 khi và chỉ khi x ≤ hoặc x ≥ .
Vậy tập xác định của hàm số là D = .
b) Hàm số xác định khi và chỉ khi –11x2 + 30x – 16 > 0
Tam thức bậc hai f ( x ) = –11x2 + 30x – 16 có ∆ = 302 – 4.( –11).( –16) = 196 > 0 suy ra f(x) có hai nghiệm phân biệt x1 = 2 và x2 = .
Ta có: a = –11 < 0 nên f ( x ) > 0 khi và chỉ khi < x < 2.
Vậy tập xác định của hàm số là D = .
c) Hàm số xác định khi và chỉ khi x – 2 ≠ 0 và –x2 + 5x – 6 ≥ 0.
+) Xét x – 2 ≠ 0 khi và chỉ khi x ≠ 2.
+) Xét tam thức bậc hai f ( x ) = –x2 + 5x – 6 có ∆ = 52 – 4.( –1).( –6) = 1 > 0 suy ra f(x) hai nghiệm phân biệt x1 = 3 và x2 = 2 ,
Ta có: a = –1 < 0 nên f ( x ) ≥ 0 khi và chỉ khi 2 ≤ x ≤ 3.
Suy ra hàm số xác định khi 2 < x ≤ 3.
Vậy tập xác định của hàm số là D = .
d) Hàm số xác định khi và chỉ khi 2x + 1 > 0 và 6x2 – 5x – 21 ≥ 0
+) Xét 2x + 1 > 0 khi và chỉ khi x >
+) Xét tam thức bậc hai f ( x ) = 6x2 – 5x – 21 có ∆ = (–5)2 – 4.6.( –21) = 529 > 0 suy ra f(x) hai nghiệm phân biệt x1 = và x2 = ,
Ta có a = 6 > 0 nên f ( x ) ≥ 0 khi và chỉ khi x ≤ hoặc x ≥ mà x > nên x ≥ .
Vậy tập xác định của hàm số là D = .
Bài 6 trang 14 SBT Toán 10 Tập 2: Tìm giá trị của tham số m để:
a) x = 3 là một nghiệm của bất phương trình ;
b) x = -1 là một nghiệm của bất phương trình ;
c) là một nghiệm của bất phương trình ;
d) x = -2 là một nghiệm của bất phương trình ;
e) x = m + 1 là một nghiệm của bất phương trình .
Lời giải:
a) x = 3 là một nghiệm của bất phương trình khi và chỉ khi (m2 – 1 ).32 + 2m.3 – 15 ≤ 0 hay 9m2 + 6m – 24 ≤ 0
Tam thức bậc hai f (m) = 9m2 + 6m – 24 có ∆ = 62 – 4.9.( –24) = 900 suy ra hai nghiệm phân biệt m1 = và m2 = –2 và a = 9 > 0 nên f ( m ) ≤ 0 khi và chỉ khi – 2 ≤ m ≤ .
Vậy – 2 ≤ m ≤ thỏa mãn yêu cầu đề bài.
b) x = -1 là một nghiệm của bất phương trình khi và chỉ khi
m.(–1 )2 – 2.(–1 ) + 1 > 0 hay m + 3 > 0 hay m > –3.
Vậy m > –3 thỏa mãn yêu cầu đề bài.
c) là một nghiệm của bất phương trình khi và chỉ khi
4.+ 2.m. – 5m ≤ 0 hay 25 ≤ 0 ( vô lí ).
Vậy không có giá trị m thỏa mãn yêu cầu đề bài.
d) x = -2 là một nghiệm của bất phương trình khi và chỉ khi ( 2m – 3 ). ( –2)2 – (m2 + 1 ).( –2) ≥ 0 hay 2m2 + 8m – 10 ≥ 0
Tam thức bậc hai f (m) = 2m2 + 8m – 10 có ∆ = 82 – 4.2.( –10) = 144 suy ra f(m) có hai nghiệm phân biệt m1 = –5 và m2 = 1 và a = 2 > 0 nên f ( m ) ≥ 0 khi và chỉ khi
m ≤ –5 hoặc m ≥ 1.
Vậy m ≤ –5 hoặc m ≥ 1 thỏa mãn yêu cầu đề bài.
e) x = m + 1 là một nghiệm của bất phương trình khi và chỉ khi 2.(m+1)2 + 2m.(m+1) – m2 – 2 < 0 hay 3m2 + 6m < 0
Tam thức bậc hai f (m) = 3m2 + 6m có ∆ = 62 – 4.3.0 = 36 suy ra hai nghiệm phân biệt m1 = –2 và m2 = 0 và a = 2 > 0 nên f ( m ) < 0 khi và chỉ khi –2 < m < 0.
Vậy –2 < m < 0 thỏa mãn yêu cầu đề bài.
Bài 7 trang 14 SBT Toán 10 Tập 2: Với giá trị nào của tham số m thì:
b) Phương trình có hai nghiệm phân biệt;
d) Phương trình có tập nghiệm là R;
e) Phương trình có tập nghiệm là .
Lời giải:
a) Phương trình có nghiệm khi và chỉ khi:
∆ = [2.( m – 2 )]2 – 4.4.m2 ≥ 0
⇔ m2 – 4m + 4 – 4m2 ≥ 0
⇔ – 3m2 – 4m + 4 ≥ 0
Tam thức bậc hai f (m) = – 3m2 – 4m + 4 có ∆m = (–4)2 – 4.( –3).4 = 64 > 0 suy ra f(m) có hai nghiệm phân biệt m1 = và m2 = –2, a = – 3 < 0 nên f (m) ≥ 0 khi và chỉ khi – 2 ≤ m ≤ .
Vậy – 2 ≤ m ≤ thỏa mãn yêu cầu đề bài.
b) Phương trình có hai nghiệm phân biệt khi và chỉ khi
m + 1 ≠ 0 và ∆ = (2m)2 – 4.( m+1 ).(–4) > 0
+) Ta có: m + 1 ≠ 0 khi và chỉ khi m ≠ –1.
+) Xét ∆ = (2m)2 – 4.(m+1).(–4) > 0
⟺ 4m2 + 16m + 16 > 0
⟺ m2 + 4m + 4 > 0
⟺ ( m + 2 )2 > 0
⟺ m ≠ –2 (vì ( m + 2 )2 ≥ 0 với mọi x ∈ ℝ)
Vậy m ≠ –1 và m ≠ –2 thỏa mãn yêu cầu bài toán.
c) +) Nếu m = 0 thì phương trình trở thành x + 10 = 0, có nghiệm x = –10. Do đó m = 0 không thỏa mãn yêu cầu.
+) Nếu m ≠ 0 thì phương trình vô nghiệm khi và chỉ khi:
∆ = (m + 1)2 – 4.m.( 3m + 10 ) < 0
⟺ m2 + 2m + 1 – 12m2 – 40m < 0
⟺ –11m2 – 38m +1 < 0
Tam thức bậc hai f (m) = –11m2 – 38m +1 có ∆m = (–38)2 – 4.( –11).1 = 1488 suy ra f(m) có hai nghiệm phân biệt:
m1 = và m2 = , a = – 11 < 0 nên f ( m ) < 0 khi và chỉ khi
m < hoặc m >
Vậy m < và m > thoả mãn yêu cầu đề bài.
d) Bất phương trình có a = 2 > 0 nên tập nghiệm là khi và chỉ khi ∆ = ( m + 2 )2 – 4.2.( 2m – 4 ) ≤ 0
⟺ m2 + 4m + 4 – 16m+ 32 < 0
⟺ m2 – 12m + 36 ≤ 0
⟺ ( m – 6 )2 ≤ 0
⟺ m = 6 (vì ( m – 6 )2 ≥ 0 với mọi m ∈ ℝ)
Vậy m = 6 thỏa mãn yêu cầu đề bài.
e) Bất phương trình có tập nghiệm là khi và chỉ khi a > 0 và ∆ ≤ 0 mà a = –3 < 0 nên không tồn tại m thỏa mãn yêu cầu.
Vậy không tồn tại m thỏa mãn yêu cầu.
với I được tính bằng nghìn đồng. Với số lượng sản phẩm bán ra là bao nhiêu thì cửa hàng có lãi?
Lời giải:
Cửa hàng có lãi khi và chỉ khi I ( x ) > 0 hay –0,1x2 + 235x – 70000 > 0
Tam thức bậc hai có ∆ = 2352 – 4.(– 0,1).(– 70 000) = 27 225 > 0 nên I(x) có hai nghiệm phân biệt x1 = 2000 và x2 = 350, a = –0,1 < 0 nên I ( x ) > 0 khi 350 < x < 2000.
Vậy cửa hàng bán ra từ 351 đến 1999 sản phẩm thì cửa hàng có lãi.
Giải SBT Toán 10 trang 15 Tập 2
với g = 10 m/s2 là gia tốc trọng trường.
a) Tỉnh h0 và v0 biết độ cao của quả bóng sau 0,5 giây và 1 giây lần lượt là 4,75 m và 5m.
b) Quả bóng có thể đạt được độ cao trên 4 m không? Nếu có thì trong thời gian bao lâu?
Lưu ý: Đáp số làm tròn đến hàng phần trăm.
Lời giải:
a) Với g = 10 m/s2 là gia tốc trọng trường thì ⇔ h(t) = –5t2 + v0t + h0.
Độ cao của quả bóng sau 0,5 giây là 4,75 m, ta có: 4,75 = –5(0,5)2 + v0.(0,5) + h0 hay 0,5v0 + h0 = 6. (1)
Độ cao của quả bóng sau 1 giây là 5 m, ta có: 5 = –5.12 + v0.1 + h0 hay v0 + h0 = 10. (2)
Từ (1) và (2) ta được:
tức là
Vậy h ( t ) = –5t2 + 8t + 2.
b) Bóng cao trên 4m khi và chỉ khi h (t) = –5t2 + 8t + 2 > 4 hay –5t2 + 8t – 2 > 0
Tam thức bậc hai f ( t ) = –5t2 + 8t – 2 có ∆ = 82 – 4.(– 5).(– 2) = 24 > 0 nên f(t) có hai nghiệm phân biệt t1 = và t2 = , a = –5 < 0 nên f ( t ) > 0 khi và chỉ khi < t < .
Quả bóng có thể đạt được độ cao trên 4m trong:
– ≈ 0,98 (s).
Vậy quả bóng có thể đạt được độ cao trên 4m trong khoảng ít hơn 0,98 giây.
c) Độ cao của bóng sau l giây trong khoảng từ 2 m đến 3 m khi và chỉ khi:
2 < h ( 1 ) = –5 + v0 + 2 < 3 tức là 5 < v0 < 6 (m/s).
Vậy vận tốc ném cần nằm trong khoảng từ 5 m/s đến 6 m/s.
Bài 10 trang 15 SBT Toán 10 Tập 2: Từ độ cao y0 mét, một quả bóng được ném lên xiên một góc so với phương ngang với vận tốc đầu v0 có phương trình chuyển động
với g= 10 m/s2
a) Viết phương trình chuyển động của quả bóng nếu m và v0 = 7m/s.
b) Để ném được quả bóng qua bức tường cao 2,5 m thì người ném phải đứng cách tường bao xa?
Lưu ý: Đáp số làm tròn đến hàng phần trăm.
Lời giải:
a) Thay và v0 = 7 vào phương trình chuyển động ta được:
y = x2 + tan30°.x + 2
y = –0,14x2 + 0,58x + 2
Vậy phương trình chuyển động là y = –0,14x2 + 0,58x + 2.
b) Với x là khoảng cách từ người ném đến tường thì bóng được ném qua tường khi và chỉ khi y ( x ) > 2,5 hay –0,14x2 + 0,58x – 0,5 > 0.
Xét tam thức bậc hai f ( x ) = –0,14x2 + 0,58x – 0,5 có ∆ = 0,582 – 4.(– 0,14).(– 0,5) = 0,0564 > 0 nên f(x) có hai nghiệm phân biệt x1 = 2,92 và x2 = 1,22, a = –0,14 < 0 nên f ( x ) > 0 khi 1,22 < x < 2,92.
Vậy người ném bóng cần phải đứng cách tường một khoảng từ trên 1,22 m đến dưới 2,92 m.
Lời giải:
Gọi x (cm) là chiều rộng hình chữ nhật.
Khi đó chiều dài hình chữ nhật là – x hay 10 – x (cm)
Chiều dài và chiều rộng của hình chữ nhật đều lớn hơn 0 và chiều rộng nhỏ hơn hoặc bằng chiều dài, ta có: 0 < x ≤ 10 – x hay 0 < x ≤ 5 (cm) (1)
Diện tích của hình chữ nhật là S = x. ( 10 – x )
Ta có x.( 10 – x ) ≥ 15 khi và chỉ khi x2 + 10x – 15 ≥ 0.
Tam thức bậc hai f ( x ) = x2 + 10x – 15 có ∆ = 102 – 4.1.(– 15) = 160 > 0 hai nghiệm phân biệt x1 = –5 + 2 và x2 = –5 – 2, a = 1 > 0 nên f ( x ) ≥ 0 khi và chỉ khi x ≤ –5 – 2 hoặc x ≥ –5 + 2.
Kết hợp với điều kiện (1) ta được –5 + 2 ≤ x ≤ 5 hay 1,33 ≤ x ≤ 5.
Vậy chiều rộng của hình chữ nhật nằm trong khoảng từ 1,33 cm đến 5 cm thì thỏa mãn yêu cầu bài toán.
Lưu ý: Đáp số làm tròn đến hàng phần trăm.
Lời giải:
a) Đặt gốc tọa độ tại một chân cổng như hình vẽ trên.
Vì chiếc cổng có dạng parabol nên phương trình y = ax2 + bx + c của đường viền cổng.
Do một chân cổng có tọa độ ( 0;0 ) nên ta có c = 0 (1).
Khoảng cách giữa hai chân cổng là 4 m nên chân cổng còn lại có tọa độ ( 4;0 ), ta có 16a + 4b + c = 0 (2)
Cổng có chiều cao 5 m nên tọa độ đỉnh cổng là ( 2; 5 ), ta có: 4a + 2b + c = 5 (3)
Thay (1) vào (2) và (3) ta được hệ phương trình:
Từ đó suy ra a = –1,25; b = 5 và c = 0.
Vậy phương trình của vòm cổng là y = –1,25x2 + 5x
b) Ta xác định các hoành độ x mà tại đó vòm cổng cao hơn thùng hàng bằng cách giải bất phương trình y = –1,25x2 + 5x ≥ 3 hay –1,25x2 + 5x – 3 ≥ 0.
Tam thức bậc hai f ( x ) = –1,25x2 + 5x – 3 có ∆ = 52 – 4.(– 1,25).(– 3) = 10 > 0 nên f(x) có hai nghiệm phân biệt x1 = 0,74 và x2 = 3,26, a = –1,25 < 0 nên f ( x ) ≥ 0 khi và chỉ khi 0,74 ≤ x ≤ 3,26.
Vậy chiều rộng tối đa của thùng hàng là 3,26 – 0,74 = 2,52 m.
Xem thêm lời giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu
Bài 1: Dấu của tam thức bậc hai
Bài 3: Phương trình quy về phương trình bậc hai
Xem thêm tài liệu Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Soạn văn lớp 10 (ngắn nhất) – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Giải sbt Ngữ văn lớp 10 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Văn mẫu lớp 10 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 10 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Giải sbt Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Trọn bộ Từ vựng Tiếng Anh 10 Friends Global đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 Friends Global
- Giải sgk Vật lí 10 – Chân trời sáng tạo
- Giải sbt Vật lí 10 – Chân trời sáng tạo
- Lý thuyết Vật lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Vật lí 10 – Chân trời sáng tạo
- Giải sgk Hóa học 10 – Chân trời sáng tạo
- Lý thuyết Hóa học 10 – Chân trời sáng tạo
- Giải sbt Hóa học 10 – Chân trời sáng tạo
- Giải Chuyên đề Hóa học 10 – Chân trời sáng tạo
- Giải sgk Sinh học 10 – Chân trời sáng tạo
- Giải sbt Sinh học 10 – Chân trời sáng tạo
- Lý thuyết Sinh học 10 – Chân trời sáng tạo
- Giải Chuyên đề Sinh học 10 – Chân trời sáng tạo
- Giải sgk Lịch sử 10 – Chân trời sáng tạo
- Giải sbt Lịch sử 10 – Chân trời sáng tạo
- Giải Chuyên đề Lịch sử 10 – Chân trời sáng tạo
- Lý thuyết Lịch sử 10 – Chân trời sáng tạo
- Giải sgk Địa lí 10 – Chân trời sáng tạo
- Lý thuyết Địa Lí 10 - Chân trời sáng tạo
- Giải sbt Địa lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Địa lí 10 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải Chuyên đề Kinh tế và pháp luật 10 – Chân trời sáng tạo
- Lý thuyết KTPL 10 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sbt Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sgk Giáo dục thể chất 10 – Chân trời sáng tạo