Lý thuyết Giải bất phương trình bậc hai một ẩn - Toán 10 Chân trời sáng tạo
Với lý thuyết Toán lớp 10 Bài 2. Giải bất phương trình bậc hai một ẩn chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Chân trời sáng tạo sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 10.
Lý thuyết Toán 10 Bài 2. Giải bất phương trình bậc hai một ẩn - Chân trời sáng tạo
A. Lý thuyết
1. Bất phương trình bậc hai một ẩn
– Bất phương trình bậc hai một ẩn x là bất phương trình có một trong các dạng:
ax2 + bx + c ≤ 0, ax2 + bx + c < 0, ax2 + bx + c ≥ 0, ax2 + bx + c > 0, với a ≠ 0.
Nghiệm của bất phương trình bậc hai là các giá trị của biến x mà khi thay vào bất phương trình ta được bất đẳng thức đúng.
Ví dụ: Bất phương trình nào sau đây là bất phương trình bậc hai một ẩn? Nếu là bất phương trình bậc hai một ẩn, x = –2 và x = 3 có phải là nghiệm của bất phương trình đó hay không?
a) 2x2 – 7x – 15 < 0;
b) 3 – 2x2 + x3 > 0;
c) x2 – 4x + 3 ≥ 0.
Hướng dẫn giải
a) 2x2 – 7x – 15 < 0
Bất phương trình trên là bất phương trình bậc hai một ẩn dạng ax2 + bx + c < 0 với a = 2, b = –7, c = –15.
• Với x = –2 thay vào bất phương trình ta có:
2.(–2)2 – 7.(–2) – 15 < 0
7 < 0. Đây là bất đẳng thức sai.
Do đó x = –2 không là nghiệm của bất phương trình.
• Với x = 3 thay vào bất phương trình ta có:
2.32 – 7.3 – 15 < 0
–18 < 0. Đây là bất đẳng thức đúng.
Do đó x = 3 là nghiệm của bất phương trình.
b) 3 – 2x2 + x3 > 0
Bất phương trình trên không là bất phương trình bậc hai một ẩn vì có chứa x3.
c) x2 – 4x + 3 ≥ 0.
Bất phương trình trên là bất phương trình bậc hai một ẩn dạng ax2 + bx + c ≥ 0 với a = 1, b = –4, c = 3.
• Với x = –2 thay vào bất phương trình ta có:
(–2)2 – 4.(–2) + 3 ≥ 0
15 ≥ 0. Đây là bất đẳng thức đúng.
Do đó x = –2 là nghiệm của bất phương trình.
• Với x = 3 thay vào bất phương trình ta có:
32 – 4.3 + 3 ≥ 0
0 ≥ 0. Đây là bất đẳng thức đúng.
Do đó x = 3 là nghiệm của bất phương trình.
2. Giải bất phương trình bậc hai một ẩn
– Giải bất phương trình bậc hai là tìm tập hợp các nghiệm của bất phương trình đó.
Ta có thể giải bất phương trình bậc hai bằng cách xét dấu của tam thức bậc hai tương ứng.
Ví dụ: Giải các bất phương trình sau:
a) x2 – 3x + 2 < 0;
b) –2x2 + 3x – 7 ≥ 0.
Hướng dẫn giải
a) x2 – 3x + 2 < 0
Xét tam thức bậc hai f(x) = x2 – 3x + 2
Ta có ∆ = (–3)2 – 4.1.2 = 1 > 0
Do đó f(x) có hai nghiệm phân biệt là x1 = 1 và x2 = 2.
Vì a = 1 > 0 nên ta có bảng xét dấu của f(x) như sau:
x |
–∞ |
|
1 |
|
2 |
|
+∞ |
f(x) |
|
+ |
0 |
– |
0 |
+ |
|
Dựa vào bảng xét dấu f(x) < 0 x ∈ (1; 2).
Vậy bất phương trình đã cho có tập nghiệm là (1; 2).
b) –2x2 + 3x – 7 ≥ 0.
Xét tam thức bậc hai f(x) = –2x2 + 3x – 7
Ta có ∆ = 32 – 4.(–2).(–7) = –47 < 0.
Mặt khác a = –2 < 0
Do đó f(x) < 0 với mọi x.
Khi đó không có giá trị nào của x thỏa mãn f(x) ≥ 0.
Vậy bất phương trình đã cho vô nghiệm.
B. Bài tập tự luyện
Bài 1. Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các bất phương trình bậc hai sau:
a) x2 – 16x + 64 > 0
b) x2 – x – 12 ≥ 0
c) –x2 + 5x – 4 < 0
d) –x2 + x – 2 ≥ 0
Hướng dẫn giải
a) x2 – 16x + 64 > 0
Xét tam thức bậc hai f(x) = x2 – 16x + 64
Dựa vào đồ thị ta thấy f(x) nằm trên trục hoành và cắt trục hoành tại điểm có hoành độ x = 8.
Do đó f(x) ≥ 0 với mọi x.
Khi đó f(x) > 0 x ≠ 8.
Vậy tập nghiệm của bất phương trình là ℝ \ {8}.
b) x2 – x – 12 ≥ 0
Xét tam thức bậc hai f(x) = x2 – x – 12
Dựa vào đồ thị ta thấy đồ thị cắt trục hoành tại hai điểm có hoành độ là x1 = –3 và x2 = 4.
Đồ thị f(x) nằm trên trục hoành khi x nằm trong khoảng (–∞; –3) và (4; +∞).
Do đó f(x) ≥ 0 x ≤ –3 hoặc x ≥ 4.
Vậy bất phương trình đã cho có tập nghiệm là (–∞; –3] ∪ [4; +∞).
c) –x2 + 5x – 4 < 0
Xét tam thức bậc hai f(x) = –x2 + 5x – 4
Dựa vào đồ thị hàm số ta thấy đồ thị cắt trục hoành tại hai điểm có hoành độ x1 = 1 và x2 = 4.
Đồ thị f(x) nằm dưới trục hoành khi x nằm trong khoảng (1; 4).
Do đó f(x) < 0 x ∈ (1; 4).
Vậy bất phương trình đã cho có tập nghiệm là (1; 4).
d) –x2 + x – 2 ≥ 0
Xét tam thức bậc hai f(x) = –x2 + x – 2
Dựa vào đồ thị hàm số ta thấy đồ thị nằm hoàn toàn dưới trục hoành.
Do đó f(x) < 0 với mọi x.
Khi đó bất phương trình f(x) ≥ 0 x ∈ ∅.
Vậy bất phương trình có tập nghiệm là ∅.
Bài 2. Giải các bất phương trình bậc hai sau:
a) 6x2 + x – 1 ≤ 0;
b) –x2 – x – 1 > 0;
c) –2x2 < 2x – 5;
d) –x2 ≥ 2x + 1;
e) x2 + 2x – 7 ≤ 2x2 – 2x.
Hướng dẫn giải
a) 6x2 + x – 1 ≤ 0
Xét tam thức bậc hai f(x) = 6x2 + x – 1 có a = 6 > 0.
Ta có: ∆ = 12 – 4.6.(–1) = 25 > 0
Do đó f(x) có hai nghiệm phân biệt là:
và
Ta có bảng xét dấu của f(x) như sau:
x |
–∞ |
|
|
|
|
|
+∞ |
f(x) |
|
+ |
0 |
– |
0 |
+ |
|
Dựa vào bảng xét dấu ta có:
f(x) ≤ 0
Vậy bất phương trình đã cho có tập nghiệm là
b) –x2 – x – 1 > 0
Xét tam thức bậc hai f(x) = –x2 – x – 1 có a = –1 < 0.
Ta có: ∆ = (–1)2 – 4.(–1).(–1) = –3 < 0.
Do đó f(x) vô nghiệm nên f(x) < 0 với mọi x.
Khi đó không có giá trị nào của x thỏa mãn f(x) > 0.
Vậy bất phương trình đã cho có tập nghiệm là ∅.
c) –2x2 < 2x – 5
–2x2 – 2x + 5 < 0
Xét tam thức bậc hai f(x) = –2x2 – 2x + 5 có a = –2 < 0.
Ta có: ∆' = (–1)2 – (–2).5 = 11 > 0.
Do đó f(x) có hai nghiệm phân biệt là:
và
Ta có bảng xét dấu của f(x) như sau:
x |
–∞ |
|
|
|
|
|
+∞ |
f(x) |
|
– |
0 |
+ |
0 |
– |
|
Dựa vào bảng xét dấu ta có:
f(x) < 0 hoặc
Vậy bất phương trình đã cho có tập nghiệm là
d) –x2 ≥ 2x + 1
–x2 – 2x – 1 ≥ 0.
Xét tam thức bậc hai f(x) = –x2 – 2x – 1 có a = –1 < 0.
Ta có: D' = (–1)2 – (–1).(–1) = 0.
Do đó f(x) có nghiệm kép x = –1.
Ta có bảng xét dấu của f(x) như sau:
x |
–∞ |
|
–1 |
|
+∞ |
f(x) |
|
– |
0 |
– |
|
Dựa vào bảng xét dấu ta có:
f(x) ≥ 0 Û x = –1.
Vậy bất phương trình đã cho có tập nghiệm {–1}.
e) x2 + 2x – 7 ≤ 2x2 – 2x.
x2 + 2x – 7 – 2x2 + 2x ≤ 0
–x2 + 4x – 7 ≤ 0.
Xét tam thức bậc hai f(x) = –x2 + 4x – 7 có a = –1 < 0.
Ta có: ∆' = 22 – (–1).(–7) = –3 < 0.
Do đó f(x) < 0 với mọi x.
Khi đó f(x) ≤ 0 với mọi x.
Vậy bất phương trình đã cho có tập nghiệm là ℝ.
Bài 3. Một quả bóng được ném thẳng từ độ cao 1,5 mét với vận tốc ban đầu 10 m/s. Độ cao của bóng so với mặt đất (m) sau t (giây) được cho bởi hàm số h(t) = –5t2 + 10t + 1,5. Quả bóng có thể đạt được độ cao trên 5 m không? Nếu có thì trong bao lâu? Làm tròn kết quả đến hàng phần mười.
Hướng dẫn giải
Để quả bóng có thể đạt được độ cao trên 5 m thì h(t) = –5t2 + 10t + 1,5 > 5.
–5t2 + 10t – 3,5 > 0.
t2 – 2t + 0,7 < 0.
Xét tam thức bậc hai f(x) = t2 – 2t + 0,7 có a = 1 > 0.
Ta có D' = (–1)2 – 1.0,7 = 0,3 > 0.
Do đó f(x) có hai nghiệm phân biệt là:
và
Ta có bảng xét dấu của f(x) như sau:
t |
–∞ |
|
0,5 |
|
1,5 |
|
+∞ |
f(t) |
|
+ |
0 |
– |
0 |
+ |
|
Dựa vào bảng xét dấu ta có:
f(t) < 0 t ∈ (0,5; 1,5).
Vậy quả bóng có thể đạt được độ cao trên 5 m trong khoảng từ 0,5 giây cho đến 1,5 giây.
Xem thêm tóm tắt lý thuyết Toán lớp 10 sách Chân trời sáng tạo hay, chi tiết khác:
Lý thuyết Bài 3: Phương trình quy về phương trình bậc hai
Lý thuyết Bài tập cuối chương 7
Lý thuyết Bài 1: Tọa độ của vectơ
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Soạn văn lớp 10 (ngắn nhất) – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Giải sbt Ngữ văn lớp 10 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Văn mẫu lớp 10 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 10 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Giải sbt Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Trọn bộ Từ vựng Tiếng Anh 10 Friends Global đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 Friends Global
- Giải sgk Vật lí 10 – Chân trời sáng tạo
- Giải sbt Vật lí 10 – Chân trời sáng tạo
- Lý thuyết Vật lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Vật lí 10 – Chân trời sáng tạo
- Giải sgk Hóa học 10 – Chân trời sáng tạo
- Lý thuyết Hóa học 10 – Chân trời sáng tạo
- Giải sbt Hóa học 10 – Chân trời sáng tạo
- Giải Chuyên đề Hóa học 10 – Chân trời sáng tạo
- Giải sgk Sinh học 10 – Chân trời sáng tạo
- Giải sbt Sinh học 10 – Chân trời sáng tạo
- Lý thuyết Sinh học 10 – Chân trời sáng tạo
- Giải Chuyên đề Sinh học 10 – Chân trời sáng tạo
- Giải sgk Lịch sử 10 – Chân trời sáng tạo
- Giải sbt Lịch sử 10 – Chân trời sáng tạo
- Giải Chuyên đề Lịch sử 10 – Chân trời sáng tạo
- Lý thuyết Lịch sử 10 – Chân trời sáng tạo
- Giải sgk Địa lí 10 – Chân trời sáng tạo
- Lý thuyết Địa Lí 10 - Chân trời sáng tạo
- Giải sbt Địa lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Địa lí 10 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải Chuyên đề Kinh tế và pháp luật 10 – Chân trời sáng tạo
- Lý thuyết KTPL 10 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sbt Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sgk Giáo dục thể chất 10 – Chân trời sáng tạo