Lý thuyết Tọa độ của vectơ – Toán 10 Chân trời sáng tạo

Với lý thuyết Toán lớp 10 Bài 1: Tọa độ của vectơ chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Chân trời sáng tạo sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 10.

1 13,424 03/01/2023
Tải về


Lý thuyết Toán 10 Bài 1: Tọa độ của vectơ - Chân trời sáng tạo

A. Lý thuyết

1. Tọa độ của vectơ đối với một hệ trục tọa độ

1.1. Trục tọa độ

Trục tọa độ (gọi tắt là trục) là một đường thẳng trên đó đã xác định một điểm O (gọi là điểm gốc) và một vectơ e có độ dài bằng 1 gọi là vectơ đơn vị của trục.

Ta kí hiệu trục đó là O;e.

1.2. Hệ trục tọa độ

Hệ trục tọa độ O;i,j gồm hai trục O;i O;j vuông góc với nhau. Điểm gốc O chung của hai trục gọi là gốc tọa độ. Trục O;i được gọi là trục hoành và kí hiệu là Ox, trục O;j được gọi là trục tung và kí hiệu là Oy. Các vectơ i j là các vectơ đơn vị trên Ox và Oy. Hệ trục tọa độ O;i,j còn được kí hiệu là Oxy.

Chú ý: Mặt phẳng mà trên đó đã cho một hệ trục tọa độ Oxy được gọi là mặt phẳng tọa độ Oxy, hay gọi tắt là mặt phẳng Oxy.

1.3. Tọa độ của một vectơ

Trong mặt phẳng Oxy, cặp số (x; y) trong biểu diễn a=xi+yj được gọi là tọa độ của vectơ a, kí hiệu a=x;y, x gọi là hoành độ, y gọi là tung độ của vectơ a.

Ví dụ:

+) Cho a=3i+2j.

Ta có cặp số (3; 2) là tọa độ của vectơ a.

Ta kí hiệu là a=3;2.

Trong đó 3 là hoành độ của vectơ a và 2 là tung độ của vectơ .

+) Cho p=5j=0i5j.

Ta có cặp số (0; –5) là tọa độ của vectơ p.

Ta kí hiệu là p=0;5.

Trong đó 0 là hoành độ của vectơ p và –5 là tung độ của vectơ p.

Chú ý:

a=x;ya=xi+yj.

• Nếu cho a=x;y b=x';y' thì a=bx=x'y=y'.

Ví dụ:

+) Ta có h=1;7h=1.i+7j=i+7j.

+) Ta có a=x;y b=2;4. Khi đó a=bx=2y=4.

Nghĩa là, a=2;4.

1.4. Tọa độ của một điểm

Trong mặt phẳng tọa độ, cho một điểm M tùy ý. Tọa độ của vectơ OM được gọi là tọa độ của điểm M.

Nhận xét:

• Nếu OM=x;y thì cặp số (x; y) là tọa độ của điểm M, kí hiệu M(x; y), x gọi là hoành độ, y gọi là tung độ của điểm M.

• M(x; y) OM=xi+yj.

Ví dụ:

+) Nếu OM=3;8 thì cặp số (–3; 8) là tọa độ của điểm M.

Ta kí hiệu là M(–3; 8).

Trong đó –3 là hoành độ của điểm M và 8 là tung độ của điểm M.

+) Cho điểm M(4; 9) OM=4i+9j.

Chú ý: Hoành độ của điểm M còn được kí hiệu là xM, tung độ của điểm M còn được kí hiệu là yM. Khi đó ta viết M(xM; yM).

Ví dụ: Trong mặt phẳng Oxy, cho ba điểm M, N, P được biểu diễn như hình bên.

a) Hãy biểu diễn các vectơ OM,  ON,  OP qua hai vectơ i j.

b) Tìm tọa độ của các vectơ m,n,p và các điểm M, N, P.

Hướng dẫn giải

a) Ta có:

+) OM=3i+3j.

+) ON=3i+2j.

+) OP=0i2j.

Vậy OM=3i+3j, ON=3i+2j, OP=0i2j.

b) Từ kết quả ở câu a), ta có:

+) OM=3i+3jOM=3;3

m=OM=3;3 và M(3; 3).

+) ON=3i+2jON=3;2

n=ON=3;2 và N(–3; 2).

+) OP=0i2jOP=0;2

p=OP=0;2 và P(0; –2).

Vậy m=3;3,  n=3;2,  p=0;2 và M(3; 3), N(–3; 2), P(0; –2).

2. Biểu thức tọa độ của các phép toán vectơ

Cho hai vectơ a=a1;a2,  b=b1;b2 và số thực k. Khi đó:

(1) a+b=a1+b1;a2+b2;

(2) ab=a1b1;a2b2;

(3) ka=ka1;ka2;

(4) a.b=a1.b1+a2.b2.

Ví dụ: Cho hai vectơ a=10;8,  b=2;5.

a) Tìm tọa độ của các vectơ a+b,ab,2a,a+4b

b) Tính các tích vô hướng a.b, 2a.4b.

Hướng dẫn giải

a) Với a=10;8,  b=2;5 ta có:

+) a+b=10+2;8+5=12;3;

+) ab=102;85=8;13;

+) 2a=2.10;2.8=20;16;

+) 4b=4.2;4.5=8;20.

Ta suy ra a+4b=10+8;8+20=18;12.

Vậy a+b=12;3, ab=8;13, 2a=20;16, a+4b=18;12.

b) Với a=10;8,  b=2;5 ta có:

+) a.b=10.2+8.5=2040=20;

+) Từ kết quả câu a), ta có 2a=20;16 4b=8;20.

Ta suy ra 2a=20;16 4b=8;20.

Khi đó ta có 2a.4b=20.8+16.20=160+320=160.

Vậy a.b=20 2a.4b=160.

3. Áp dụng của tọa độ vectơ

3.1. Liên hệ giữa tọa độ của điểm và tọa độ của vectơ trong mặt phẳng

Cho hai điểm A(xA; yA), B(xB; yB). Ta có: AB=xBxA;yByA.

Ví dụ: Cho ba điểm A(2; 5), B(–1; 1), C(5; –7). Tìm tọa độ của các vectơ AC,  CB,  BA.

Hướng dẫn giải

Với A(2; 5), B(–1; 1), C(5; –7) ta có:

AC=xCxA;yCyA=52;75=3;12.

CB=xBxC;yByC=15;17=6;8.

BA=xAxB;yAyB=21;51=3;4.

Vậy AC=3;12,  CB=6;8,  BA=3;4.

3.2. Tọa độ trung điểm của đoạn thẳng và trọng tâm của tam giác

Cho hai điểm A(xA; yA) và B(xB; yB). Tọa độ trung điểm M(xM; yM) của đoạn thẳng AB là:

xM=xA+xB2,yM=yA+yB2.

Cho ∆ABC có A(xA; yA), B(xB; yB), C(xC; yC). Tọa độ trọng tâm G(xG; yG) của tam giác ABC là:

xG=xA+xB+xC3,yG=yA+yB+yC3.

Ví dụ: Cho ∆DEF có tọa độ các đỉnh là D(3; 1), E(5; 8), F(9; 4).

a) Tìm tọa độ trung điểm H của cạnh EF.

b) Tìm tọa độ trọng tâm G của ∆DEF.

Hướng dẫn giải

a) Với E(5; 8), F(9; 4):

Vì H là trung điểm của cạnh EF.

Ta suy ra xH=xE+xF2=5+92=7yM=yE+yF2=8+42=6

Vậy H(7; 6).

b) Với D(3; 1), E(5; 8), F(9; 4):

Vì G là trọng tâm của ∆DEF.

Ta suy ra xG=xD+xE+xF3=3+5+93=173yG=yD+yE+yF3=1+8+43=133

Vậy G173;133.

3.3. Ứng dụng biểu thức tọa độ của các phép toán vectơ

Cho hai vectơ a=a1;a2,  b=b1;b2 và hai điểm A(xA; yA), B(xB; yB). Ta có:

aba1b1+a2b2=0;

a b cùng phương a1b2 – a2b1 = 0;

a=a12+a22;

AB=xBxA2+yByA2;

cosa,b=a.ba.b=a1b1+a2b2a12+a22.b12+b22 (a,b khác 0).

Ví dụ: Trong mặt phẳng Oxy, cho ∆MNP có M(2; 1), N(–3; –2), P(7; –8).

a) Tìm tọa độ H là chân đường cao của ∆MNP kẻ từ N.

b) Giải tam giác MNP.

Hướng dẫn giải

a) Với M(2; 1), N(–3; –2), P(7; –8).

Gọi H(x; y).

Ta có:

+) NH=x3;y2=x+3;y+2.

+) MH=x2;y1.

+) MP=72;81=5;9

Vì H(x; y) là chân đường cao của ∆MNP kẻ từ N nên ta có NH MP.

Ta suy ra NHMP.

Do đó NH.MP=0.

(x + 3).5 + (y + 2).( –9) = 0.

5x – 9y – 3 = 0  (1).

Ta thấy hai vectơ MH,  MP cùng phương

(x – 2).( –9) – (y – 1).5 = 0.

–9x – 5y + 23 = 0   (2).

Từ (1), (2), ta có hệ phương trình: 5x9y3=09x+5y+23=0x=247y=117

Vậy H247;117.

b) Với M(2; 1), N(–3; –2), P(7; –8) ta có:

+) MN=5;3 và NM=5;3

MN=MN=52+32=34.

+) NP=10;6. NP=NP=102+62=234.

+) MP=5;9.

MP=MP=52+92=106.

+) cosM=cosMN,  MP=MN.MPMN.MP=5.5+3.934.1060,033.

Suy ra M^88°7'.

+) cosN=cosNM,  NP=NM.NPNM.NP=5.10+3.634.234=817.

Suy ra N^61°56'.

+) Ta có M^+N^+P^=180° (định lí tổng ba góc của một tam giác).

P^=180°M^N^180°88°7'61°56'=29°57'.

Vậy MN=34,  MP=106,  NP=234,  

M^88°7',  N^61°55',  P^29°57'.

B. Bài tập tự luyện

Bài 1. Trong mặt phẳng Oxy, cho a=2i+j, b=3i+4j, c=7i+2j.

a) Tìm tọa độ các vectơ a,  b,  c.

b) Tìm tọa độ của u, với u=2a3b+c.

c) Tìm tọa độ của v, với v+a=bc.

d) Tìm các số thực h, k sao cho c=ka+hb.

Hướng dẫn giải

a) Ta có:

+) a=2i+j a=2;1;

+) b=3i+4j b=3;4;

+) c=7i+2j c=7;2.

Vậy a=2;1,  b=3;4,  c=7;2.

b) Ta có:

+) 2a=2.2;2.1=4;2.

+) 3b=3.3;3.4=9;12.

Ta suy ra 2a3b=49;212=5;10.

Khi đó ta có u=2a3b+c=5+7;10+2=2;8.

Vậy u=2;8.

c) Ta có bc=37;42=4;2.

Khi đó ta có bca=42;21=6;1.

Theo đề, ta có: v+a=bc.

v=bca=6;1.

Vậy v=6;1.

d) Ta có:

+) ka=2k;k;

+) hb=3h;4h.

Suy ra ka+hb=2k+3h;k+4h.

Ta có c=ka+hb.

7=2k+3h2=k+4hk=225h=35

Vậy k=225,h=35 thỏa yêu cầu bài toán.

Bài 2. Trong mặt phẳng Oxy, cho ∆ABC biết A(–3; 2), B(4; 3) và điểm C nằm trên trục Ox.

a) Tìm tọa độ trọng tâm G của ∆ABC và điểm C, biết G nằm trên trục Oy.

b) Giải ∆ABC.

c) Tìm tọa độ trực tâm H của ∆ABC.

Hướng dẫn giải

a) Vì C nằm trên trục Ox nên ta có tọa độ C(xC; 0).

Vì G nằm trên trục Oy nên ta có tọa độ G(0; yG).

Ta có G là trọng tâm của ∆ABC.

Ta suy ra xG=xA+xB+xC3yG=yA+yB+yC30=3+4+xC3yG=2+3+03xC=1yG=53

Vậy G0;53,  C1;0.

b) Với A(–3; 2), B(4; 3), C(–1; 0) ta có:

+) AB=43;32=7;1.

AB=AB=72+12=52.

+) AC=13;02=2;2.

AC=AC=22+22=22.

+) BC=14;03=5;3.

BC=BC=52+32=34.

+) cosA=cosAB,  AC=AB.ACAB.AC=7.2+1.252.22=35.

Suy ra A^=53°8'.

+) cosB=cosBA,  BC=BA.BCBA.BC

Do đó cosB =7.5+1.352.34=191785.

Suy ra B^=22°50'.

+) Ta có A^+B^+C^=180° (định lí tổng ba góc của một tam giác).

C^=180°A^B^180°53°8'22°50'=104°2'.

Vậy AB=52,AC=22,  BC=34,  

A^53°8',  B^22°50',  C^104°2'.

c)

Gọi H(x; y).

Þ BH=x4;y3 CH=x+1;y.

Ta có H(x; y) là trực tâm của ∆ABC.

Suy ra BHACCHAB

Khi đó ta có BH.AC=0CH.AB=0

x4.2+y3.2=0x+1.7+y.1=0

2x2y2=07x+y+7=0

x=34y=74

Vậy H34;74.

Bài 3. Trong mặt phẳng Oxy, cho ba vectơ a=1;2,  b=3;1,  c=6;5. Tìm m để u=ma+b cùng phương với c.

Hướng dẫn giải

Ta có ma=m;2m.

Ta suy ra u=ma+b=m3;2m+1.

Ta có u cùng phương với c  (m – 3).5 – (2m + 1).6 = 0.

–7m – 21 = 0

m = –3.

Vậy m = –3 thỏa yêu cầu bài toán.

Xem thêm tóm tắt lý thuyết Toán lớp 10 sách Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài 2: Đường thẳng trong mặt phẳng tọa độ

Lý thuyết Bài 3: Đường tròn trong mặt phẳng tọa độ

Lý thuyết Bài 4: Ba đường conic trong mặt phẳng tọa độ

Lý thuyết Bài tập cuối chương 9

Lý thuyết Bài 1: Không gian mẫu và biến cố

1 13,424 03/01/2023
Tải về


Xem thêm các chương trình khác: