Lý thuyết Định lí côsin và định lí sin – Toán 10 Chân trời sáng tạo
Với lý thuyết Toán lớp 10 Bài 2: Định lí côsin và định lí sin chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Chân trời sáng tạo sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 10.
Lý thuyết Toán 10 Bài 2: Định lí côsin và định lí sin - Chân trời sáng tạo
A. Lý thuyết
1. Định lí côsin trong tam giác
Định lí côsin: Trong tam giác ABC với BC = a, CA = b, AB = c, ta có:
a2 = b2 + c2 – 2bc.cosA;
b2 = c2 + a2 – 2ca.cosB;
c2 = a2 + b2 – 2ab.cosC.
Từ định lí côsin, ta có hệ quả sau đây:
Hệ quả:
Ví dụ 1. Cho tam giác ABC có AB = 4, AC = 5 và Tính độ dài cạnh BC, số đo góc B và C (làm tròn số đo góc đến độ).
Hướng dẫn giải
Xét tam giác ABC có AB = 4, AC = 5 và áp dụng định lí côsin ta có:
BC2 = AB2 + AC2 – 2.AB.AC.cosA
Þ BC2 = 17
Áp dụng hệ quả định lí côsin ta có:
+)
+)
Vậy và C ≈ 51°.
2. Định lí sin trong tam giác
Định lí sin: Trong tam giác ABC với BC = a, CA = b, AB = c, ta có:
Trong đó R là bán kính đường tròn ngoại tiếp tam giác ABC.
Từ định lí sin, ta có hệ quả sau đây:
Hệ quả:
a = 2R.sinA; b = 2R.sinB; c = 2R.sinC;
Ví dụ 2. Cho hình vẽ:
Tính các cạnh, các góc chưa biết và bán kính đường tròn ngoại tiếp R của tam giác ABC (làm tròn độ dài đến chữ số thập phân thứ nhất).
Hướng dẫn giải
Xét tam giác ABC có ta có:
(định lí tổng ba góc trong tam giác)
Theo định lí sin ta có:
Vậy và R ≈ 7,1.
3. Các công thức tính diện tích tam giác
Cho tam giác ABC. Ta kí hiệu:
+) BC = a, CA = b, AB = c.
+) ha, hb, hc là độ dài các đường cao lần lượt ứng với các cạnh BC, CA, AB.
+) R là bán kính đường tròn ngoại tiếp tam giác.
+) r là bán kính đường tròn nội tiếp tam giác.
+) p là nửa chu vi tam giác.
+) S là diện tích tam giác.
Ta có các công thức tính diện tích tam giác sau:
(1)
(2)
(3)
(4) S = pr;
(5) (Công thức Heron).
Ví dụ 3. Tính diện tích S của tam giác ABC, bán kính đường tròn nội tiếp r và bán kính đường tròn ngoại tiếp R (nếu chưa biết) (làm tròn kết quả đến chữ số thập phân thứ ba) trong các trường hợp sau:
a) ;
b) AB = 10, AC = 17, BC = 21.
Hướng dẫn giải
a)
Xét tam giác ABC có ta có:
(định lí tổng ba góc trong tam giác)
Theo hệ quả định lí sin ta có:
+) BC = 2.R.sinA = 2.3.sin30° = = 3;
+) AC = 2.R.sinB = 2.3.sin45° =
+) AB = 2.R.sinC = 2.3.sin105° ≈ 5,796.
Theo công thức tính diện tích tam giác ta có:
(đơn vị diện tích)
Ta có nửa chu vi tam giác ABC là:
Mà SABC = pr
Vậy SABC ≈ 6,148 (đơn vị diện tích) và r ≈ 0,943.
b) Nửa chu vi tam giác ABC là:
Áp dụng công thức Heron ta có:
(đơn vị diện tích)
Mà SABC = pr
Lại có .
Vậy S = 84 (đơn vị diện tích) và r = 3,5; R = 10,625.
B. Bài tập tự luyện
Bài 1. Tính độ dài cạnh và góc chưa biết của tam giác ABC, diện tích tam giác ABC, bán kính đường tròn ngoại tiếp, bán kính đường tròn nội tiếp và đường cao kẻ từ C của tam giác ABC (làm tròn kết quả đến chữ số thập phân thứ hai) trong hình sau:
Hướng dẫn giải
Xét tam giác ABC có ta có:
(định lí tổng ba góc trong tam giác)
Theo định lí sin ta có:
Nửa chu vi tam giác ABC là:
Áp dụng công thức Heron ta có diện tích tam giác ABC là:
(đơn vị diện tích)
Mặt khác SABC = pr
Lại có (với hC là đường cao kẻ từ C đến AB của tam giác ABC)
Vậy BC ≈ 3,92; AC ≈ 5,28; R ≈ 3,05; r ≈ 1,34; hC ≈ 3,4 và S ≈ 10,19 (đơn vị diện tích).
Bài 2. Hình bình hành ABCD có AB = a, và Tính diện tích hình bình hành.
Hướng dẫn giải
Vì ABCD là hình bình hành nên AD = BC (tính chất hình bình hành)
Mà nên
Diện tích tam giác ABD là:
(đơn vị diện tích)
Do đó diện tích hình bình hành ABCD là:
(đơn vị diện tích)
Bài 3. Tam giác ABC vuông tại A có AB = AC = 30 cm. Hai đường trung tuyến BE và CF cắt nhau tại G. Tính diện tích tam giác GEC.
Hướng dẫn giải
Vì BE là trung tuyến của tam giác ABC nên E là trung điểm của AC.
Do đó
Hai đường trung tuyến BE và CF cắt nhau tại G nên G là trọng tâm của tam giác ABC.
Khi đó (tính chất trọng tâm của tam giác)
Gọi H là chân đường vuông góc kẻ từ G xuống AC.
Suy ra GH // AB.
Do đó (định lí Ta – let trong tam giác ABE)
Hay
Diện tích tam giác GEC là:
Vậy diện tích tam giác GEC là 75 cm2.
Bài 4. Vào lúc 9 giờ sáng, hai vận động viên A và B xuất phát từ cùng một vị trí O. Vận động viên A chạy với vận tốc 13 km/h theo một góc so với hướng Bắc là 15°, vận động viên B chạy với vận tốc 12 km/h theo một góc so với hướng Bắc là 135° (hình vẽ). Tại thời điểm nào thì vận động viên A cách vận động viên B một khoảng 10 km (làm tròn kết quả đến phút)?
Hướng dẫn giải
Gọi x giờ (x > 0) là khoảng thời gian kể từ khi bắt đầu chạy từ điểm O đến khi hai vận động viên cách nhau 10 km.
Khi đó đoạn đường mà vận động viên A chạy được là 13x (km);
Đoạn đường mà vận động viên B chạy được là 12x (km).
Theo hình vẽ trên ta có: AB = 10, OA = 13x, OB = 12x và
Áp dụng định lí côsin trong tam giác OAB ta có:
AB2 = OA2 + OB2 – 2.OA.OB.
Þ 102 = (13x)2 + (12x)2 – 2.13x.12x.sin120°
Þ x ≈ 0,483 (giờ) (vì x > 0) ≈ 29 phút.
Vì hai vận động viên bắt đầu chạy từ 9 giờ, do đó thời điểm mà hai vận động viên cách nhau 10 km là khoảng: 9 giờ 29 phút.
Vậy vào khoảng 9 giờ 29 phút thì hai vận động viên sẽ cách nhau 10 km.
Xem thêm tóm tắt lý thuyết Toán lớp 10 sách Chân trời sáng tạo hay, chi tiết khác:
Lý thuyết Bài 3: Giải tam giác và ứng dụng thực tế
Lý thuyết Bài tập cuối chương 4
Lý thuyết Bài 1: Khái niệm vectơ
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Soạn văn lớp 10 (ngắn nhất) – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Giải sbt Ngữ văn lớp 10 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Văn mẫu lớp 10 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 10 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Giải sbt Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Trọn bộ Từ vựng Tiếng Anh 10 Friends Global đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 Friends Global
- Giải sgk Vật lí 10 – Chân trời sáng tạo
- Giải sbt Vật lí 10 – Chân trời sáng tạo
- Lý thuyết Vật lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Vật lí 10 – Chân trời sáng tạo
- Giải sgk Hóa học 10 – Chân trời sáng tạo
- Lý thuyết Hóa học 10 – Chân trời sáng tạo
- Giải sbt Hóa học 10 – Chân trời sáng tạo
- Giải Chuyên đề Hóa học 10 – Chân trời sáng tạo
- Giải sgk Sinh học 10 – Chân trời sáng tạo
- Giải sbt Sinh học 10 – Chân trời sáng tạo
- Lý thuyết Sinh học 10 – Chân trời sáng tạo
- Giải Chuyên đề Sinh học 10 – Chân trời sáng tạo
- Giải sgk Lịch sử 10 – Chân trời sáng tạo
- Giải sbt Lịch sử 10 – Chân trời sáng tạo
- Giải Chuyên đề Lịch sử 10 – Chân trời sáng tạo
- Lý thuyết Lịch sử 10 – Chân trời sáng tạo
- Giải sgk Địa lí 10 – Chân trời sáng tạo
- Lý thuyết Địa Lí 10 - Chân trời sáng tạo
- Giải sbt Địa lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Địa lí 10 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải Chuyên đề Kinh tế và pháp luật 10 – Chân trời sáng tạo
- Lý thuyết KTPL 10 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sbt Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sgk Giáo dục thể chất 10 – Chân trời sáng tạo