Giải các bất phương trình bậc hai sau: a) x^2 - 3x < 4

Lời giải bài 4 trang 14 SBT Toán 10 Tập 2 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 10 Tập 2.

1 602 09/12/2022


Giải SBT Toán lớp 10 Bài 2: Giải bất phương trình bậc hai một ẩn

Bài 4 trang 14 SBT Toán 10 Tập 2: Giải các bất phương trình bậc hai sau:

Sách bài tập Toán 10 Bài 2: Giải bất phương trình bậc hai một ẩn - Chân trời sáng tạo (ảnh 1)

Lời giải:

a) Ta có: x23x<4  x2 – 3x – 4 < 0

Xét tam thức bậc hai f(x) = x2 – 3x – 4 có ∆ = (– 3)2 – 4.1.(– 4) = 25 > 0 nên f(x) có hai nghiệm phân biệt x1 = 4 và x2 = –1.

Ta có: a = 1 > 0 nên f ( x ) < 0 với –1 < x < 4.

Suy ra x2 – 3x – 4 < 0 hay x23x<4 với –1 < x < 4.

Vậy bất phương trình đã cho có tập nghiệm khi S = (–1 ; 4).

b) Ta có: 0 < 2x2 – 11x – 6 2x2 – 11x – 6 > 0

Tam thức bậc hai f( x ) = 2x2 – 11x – 6 có = (– 11)2 – 4.2.(– 6) = 169 > 0 nên f(x) có hai nghiệm phân biệt x1 = 6 và x2 = -12,

Ta lại có: a = 2 > 0 nên f ( x ) > 0 khi x < -12 hoặc x > 6.

Vậy tập nghiệm của bất phương trình là: S =  (– ; -12) (6; +).

c) 22x+32+4x+300 

–2.( 4x2 + 12x + 9 ) + 4x + 30 ≤ 0

–8x2 – 24x – 18 + 4x + 30 ≤ 0

–8x2 – 20x + 12 ≤ 0

–2x2 – 5x + 3 ≤ 0

Tam thức bậc hai f ( x ) = –2x2 – 5x + 3 có = (– 5)2 – 4.(– 2).3 = 49 nên f(x) có hai nghiệm phân biệt x1 = –3 và x2 = 12,

Ta lại có a = –2 < 0 nên f ( x ) ≤ 0 khi x ≤ –3 hoặc x 12

Vậy bất phương trình đã cho có tập nghiệm là S = (– ; –3] [12; +∞).

d) 3x24x1x28x+28

–4x2 + 20x – 25 ≤ 0

Tam thức bậc hai f ( x ) = –4x2 + 20x – 25 có ∆ = 202 – 4. ( –4 ) . ( – 25 ) = 0 ,

a = –4 < 0 nên f ( x ) ≤  0 với mọi x ℝ.

Suy ra –4x2 + 20x – 25 ≤ 0 với mọi x ℝ.

Vậy 3x24x1x28x+28 với mọi x ℝ.

e) 2x123x2+6x+27

2x2 – 4x + 2 ≥ 3x2  + 6x + 27

–x2 – 10x – 25 ≥ 0

–( x + 5 )2 ≥ 0

x = –5 ( do –( x + 5 )2 ≤ 0 với mọi x ℝ)

Vậy 2x123x2+6x+27 khi x = –5

g) 2x+12+9x+2<0

2(x2 + 2x + 1) – 9x + 18 < 0

2x2 – 5x + 20 < 0

Tam thức bậc hai f ( x ) = 2x2 – 5x + 20 có ∆ = (– 5)2 – 4. 2 . 20 = –135 < 0,

Ta lại có a = 2 > 0 nên f ( x ) > 0 với mọi x ℝ.

Suy ra 2x2 – 5x + 20 > 0 với mọi x ℝ.

Vậy không tồn tại x thỏa mãn 2x+12+9x+2<0.

Xem thêm lời giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 1 trang 13 SBT Toán 10 Tập 2: x = 2 là một nghiệm của bất phương trình nào sau đây...

Bài 2 trang 13 SBT Toán 10 Tập 2: Dựa vào đồ thị của hàm số bậc hai đã cho, hãy nêu tập nghiệm...

Bài 3 trang 14 SBT Toán 10 Tập 2: Giải các bất phương trình bậc hai sau...

Bài 5 trang 14 SBT Toán 10 Tập 2: Tìm tập xác định của các hàm số sau...

Bài 6 trang 14 SBT Toán 10 Tập 2: Tìm giá trị của tham số m để: a) x = 3 là một nghiệm của bất phương trình...

Bài 7 trang 14 SBT Toán 10 Tập 2: Với giá trị nào của tham số m thì...

Bài 8 trang 14 SBT Toán 10 Tập 2: Lợi nhuận thu được từ việc sản xuất và bán x sản phẩm thủ công...

Bài 9 trang 15 SBT Toán 10 Tập 2: Một quả bóng được ném thẳng lên từ độ cao h0 (m) với vận tốc v0(m/s)...

Bài 10 trang 15 SBT Toán 10 Tập 2: Từ độ cao y0 mét, một quả bóng được ném lên xiên một góc α...

Bài 11 trang 15 SBT Toán 10 Tập 2: Một hình chữ nhật có chu vi bằng 20 cm. Để điện tích hình chữ nhật lớn hơn...

Bài 12 trang 15 SBT Toán 10 Tập 2: Thiết kế của một chiếc cổng có hình parabol với chiều cao 5 m...

Lý thuyết Bài 2: Giải bất phương trình bậc hai một ẩn

1 602 09/12/2022


Xem thêm các chương trình khác: