Lý thuyết Ôn tập Chương 4 – Toán 7 Chân trời sáng tạo
Với lý thuyết Toán lớp 7 Ôn tập Chương 4 chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Chân trời sáng tạo sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 7.
A. Lý thuyết Toán 7 Ôn tập Chương 4 - Chân trời sáng tạo
1. Hai góc kề bù
Hai góc kề nhau là hai góc có một cạnh chung và không có điểm trong chung.
Hai góc bù nhau là hai góc có tổng số đo bằng 1800.
Hai góc vừa kề nhau, vừa bù nhau gọi là hai góc kề bù.
Chú ý : Nếu M là điểm trong của góc xOy thì .
2. Hai góc đối đỉnh
Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia.
Chú ý: Khi và là hai góc đối đỉnh, ta còn nói đối đỉnh với ; đối đỉnh với ; và đối đỉnh với nhau.
3. Tính chất của hai góc đối đỉnh
Hai góc đối đỉnh thì bằng nhau.
Chú ý: Hai đường thẳng vuông góc
Hai đường thẳng a và b cắt nhau tại O tạo thành bốn góc , , , .
Do tính chất của hai góc đối đỉnh hoặc kề bù, ta thấy trong bốn góc nêu trên, nếu có một góc vuông thì ba góc còn lại cũng là góc vuông.
Khi đó, ta nói hai đường thẳng a và b vuông góc với nhau và kí hiệu là a ⊥ b, hoặc b ⊥ a.
4. Tia phân giác của một góc
Tia phân giác của một góc là tia phát xuất từ đỉnh của góc, đi qua một điểm trong của góc và tạo với hai cạnh của góc đó hai góc bằng nhau.
Ta có thể dùng thước đo góc để vẽ tia phân giác của một góc.
Chú ý: Ta gọi đường thẳng chứa tia phân giác của một góc là đường phân giác của góc đó.
5. Dấu hiệu nhận biết hai đường thẳng song song
Đường thẳng c cắt hai đường thẳng a và b lần lượt tại A và B. Với mỗi cặp góc gồm một góc đỉnh A và một góc đỉnh B, ta có:
a) Hai góc và (tương tự và ) gọi là hai góc so le trong.
b) Hai góc và (tương tự và ; và ; và ;) gọi là hai góc đồng vị.
Tính chất: Nếu đường thẳng c cắt hai đường thẳng a và b và trong các góc tạo thành có một cặp góc so le trong bằng nhau (hoặc một cặp góc đồng vị bằng nhau) thì a và b song song với nhau.
Chú ý: Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song với nhau.
6. Tiên đề Euclid về hai đường thẳng song song.
Qua một điểm nằm ngoài một đường thẳng chỉ có một đường thẳng song song với đường thẳng đó.
Chú ý: Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song với nhau.
7. Tính chất của hai đường thẳng song song
Nếu một đường thẳng cắt hai đường thẳng song song thì:
- Hai góc so le trong bằng nhau
- Hai góc đồng vị bằng nhau.
Chú ý: Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng còn lại.
8. Khái niệm định lý
Định lý là một khẳng định được suy ra từ những khẳng định được coi là đúng.
Khi định lý được phát biểu dưới dạng “Nếu … thì …”, phần nằm giữa chữ “Nếu” và chữ “thì” là phần giả thiết (viết tắt là GT), phần nằm sau chữ “thì” là phần kết luận (viết tắt là KL).
2. Chứng minh định lý
Chứng minh định lý là dùng lập luận để từ giả thiết suy ra kết luận.
Bài tập Tổng hợp Toán 7 Chương 4
Bài 1:
a) Hãy kể tên các cặp góc kề nhau trong hình vẽ.
b) Tìm số đo của góc , biết và .
Hướng dẫn giải
a) Các cặp góc kề nhau:
và (vì có cạnh chung Oy và không có điểm trong chung).
và (vì có cạnh chung Oy và không có điểm trong chung).
và (vì có cạnh chung Oz và không có điểm trong chung).
và (vì có cạnh chung Oz và không có điểm trong chung).
b) Vì và là hai góc kề nhau nên :
.
Suy ra:
Vậy .
Bài 2: Cho hai góc và kề bù với nhau. Biết . Tính .
Hướng dẫn giải
Vì hai góc và kề bù với nhau nên .
Suy ra: .
Do đó .
Vậy .
Bài 3: Tính các góc trong hình, biết .
Hướng dẫn giải
Ta có (hai góc đối đỉnh).
Ta có (hai góc kề bù)
Suy ra .
(hai góc đối đỉnh)
Vậy .
Bài 4: Cho góc xOy có số đo bằng 1100. Tia Oz là tia phân giác của góc xOy. Tính số đo các góc xOz và yOz.
Hướng dẫn giải
Vì tia Oz là tia phân giác của góc xOy nên: và .
Suy ra: .
Vậy .
Bài 5: Vẽ tia phân giác của góc .
Hướng dẫn giải
- Ta vẽ góc .
- Ta có và nên suy ra .
- Dùng thước đo góc vẽ tia Az đi qua một điểm trong của sao cho .
- Ta được tia Az là tia phân giác của .
Bài 6: Hãy kể tên các cặp góc so le trong, đồng vị trong hình vẽ sau
Hướng dẫn giải
- Các cặp góc so le trong là: và ; và .
- Các cặp góc đồng vị là: và , và , và , và .
Bài 7: Biết a // b. Hãy tính số đo các góc và .
Hướng dẫn giải
Vì a // b và đường thẳng CD vuông góc với a nên đường thẳng CD cũng vuông góc với đường thẳng b.
Suy ra .
Vì a // b nên ta có: (hai góc so le trong).
Mà và là hai góc kề bù nên: .
Suy ra .
Vậy ; .
Bài 8: Vẽ hình, viết giả thiết, kết luận của định lý : “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng còn lại ”.
Hướng dẫn giải
Bài 9: Chứng minh định lý: “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau”.
Hướng dẫn giải
Chứng minh
Ta có a ⊥ c suy ra ; và b ⊥ c suy ra .
Suy ra .
Mà hai góc , là hai góc đồng vị.
Theo dấu hiệu nhận biết hai đường thẳng song song suy ra a // b.
B. Trắc nghiệm Bài tập cuối Chương 4 (Chân trời sáng tạo 2023) có đáp án
I. Nhận biết
Câu 1. Quan sát hình vẽ.
Có tất cả bao nhiêu góc kề (không kể góc bẹt) với ?
A. 1;
B. 2;
C. 3;
D. 4.
Đáp án: C
Giải thích:
Hai góc kề nhau là hai góc có một cạnh chung và không có điểm trong chung.
Do đó các góc kề với là:
Vậy có tất cả 3 góc kề (không kể góc bẹt) với .
Câu 2. Cho hình vẽ
Chọn khẳng định đúng:
A. OA là tia phân giác của ;
B. OB là tia phân giác của ;
C. OC là tia phân giác của ;
D. Cả 3 phương án đều đúng.
Đáp án: B
Giải thích:
Vì tia OB nằm giữa hai tia OA và OC nên tạo thành hai góc tương ứng là và
Mà
Do đó OB là tia phân giác của
Câu 3. Tia Oz là tia phân giác của , biết rằng . Số đo của là:
A. 20°;
B. 40°;
C. 80°;
D. 140°.
Đáp án: B
Giải thích:
Theo bài ta có: Oz là tia phân giác của
Nên (tính chất tia phân giác của một góc)
Mà
Suy ra
Câu 4. Cho , biết rằng OE là tia phân giác của . Số đo của là
A. 20°;
B. 40°;
C. 70°;
D. 110°.
Đáp án: C
Giải thích:
Theo bài ta có: OE là tia phân giác của
Nên (tính chất đường phân giác của một góc) (1)
Ta lại có (hai góc kề nhau) (2)
Từ (1) và (2) suy ra
Do đó
Câu 5. Cho , kẻ Oz sao cho Oy là phân giác của . Khi đó là
A. Góc nhọn;
B. Góc vuông;
C. Góc tù;
D. Góc bẹt.
Đáp án: D
Giải thích:
Theo bài tia Oy là phân giác của
Nên (tính chất tia phân giác của một góc)
Ta có (hai góc kề nhau)
Hay
Suy ra
Do đó là góc bẹt.
Câu 6. Cho a // b, đường thẳng c cắt hai đường thẳng a, b lần lượt tại E và F sao cho .
Số đo là
A. 40°;
B. 80°;
C. 100°;
D. 140°.
Đáp án: B
Giải thích:
Theo bài ta có a // b mà và là hai góc ở vị trí so le trong.
Do đó (tính chất của hai đường thẳng song song)
Mà nên
Câu 7. Cho định lí: “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau”. Giả thiết của định lí là
A. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba;
B. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba;
C. Chúng song song với nhau;
D. Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba.
Đáp án: B
Giải thích:
Định lí “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau” là một định lí có:
+ Giả thiết: hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba;
+ Kết luận: chúng song song với nhau.
Do đó A, C, D sai ; B đúng
II. Thông hiểu
Câu 1. Cho hình vẽ, biết rằng OB là tia phân giác của .
Số đo của là
A. 30°;
B. 31°;
C. 32°;
D. 33°.
Đáp án: B
Giải thích:
Ta có và là hai góc kề bù nên
Hay
Suy ra
Theo bài ta có OB là tia phân giác của
Do đó (tính chất tia phân giác của một góc) (1)
Mà (hai góc kề nhau) (2)
Từ (1) và (2) suy ra
Hay
Câu 2. Cho hình vẽ, biết rằng và Oz là phân giác của .
Số đo của là
A. 35°;
B. 70°;
C. 110°;
D. 145°.
Đáp án: D
Giải thích:
Ta có (hai góc kề bù)
Hay
Suy ra
Theo bài ta có Oz là phân giác của
Suy ra (tính chất tia phân giác của một góc) (1)
Mà (hai góc kề nhau) (2)
Từ (1) và (2) suy ra
Ta có (hai góc kề nhau)
Hay
Suy ra
Câu 3. Cho hình vẽ
Giá trị của m để tia Oz là tia phân giác của là:
A. m = 50;
B. m = 55;
C. m = 60;
D. m = 65.
Đáp án: A
Giải thích:
Để tia Oz là tia phân giác của thì (1)
Mà (hai góc kề nhau) (2)
Từ (1) và (2) suy ra
Suy ra
Ta lại có (hai góc kề bù)
Suy ra
Do đó m = 50
Xem thêm tóm tắt lý thuyết Toán lớp 7 sách Chân trời sáng tạo hay, chi tiết khác:
Lý thuyết Bài 2: Tia phân giác
Lý thuyết Bài 3: Hai đường thẳng song song
Lý thuyết Bài 4: Định lí và chứng minh một định lí
Xem thêm các chương trình khác:
- Soạn văn lớp 7 (hay nhất) – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 7 – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 7 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 7 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 7 – Chân trời sáng tạo
- Soạn văn lớp 7 (ngắn nhất) – Chân trời sáng tạo
- Văn mẫu lớp 7 – Chân trời sáng tạo
- Giải sgk Lịch sử 7 – Chân trời sáng tạo
- Lý thuyết Lịch Sử 7 – Chân trời sáng tạo
- Giải sbt Lịch sử 7 – Chân trời sáng tạo
- Giải sgk Địa lí 7 – Chân trời sáng tạo
- Lý thuyết Địa Lí 7 – Chân trời sáng tạo
- Giải sbt Địa lí 7 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 7 Friend plus – Chân trời sáng tạo
- Giải sbt Tiếng Anh 7 Friend plus– Chân trời sáng tạo
- Trọn bộ Từ vựng Tiếng Anh 7 Friends plus đầy đủ nhất
- Bài tập Tiếng Anh 7 Friends plus theo Unit có đáp án
- Giải sgk Khoa học tự nhiên 7 – Chân trời sáng tạo
- Lý thuyết Khoa học tự nhiên 7 – Chân trời sáng tạo
- Giải sbt Khoa học tự nhiên 7 – Chân trời sáng tạo
- Giải sgk Giáo dục công dân 7 – Chân trời sáng tạo
- Lý thuyết Giáo dục công dân 7 – Chân trời sáng tạo
- Giải sbt Giáo dục công dân 7 – Chân trời sáng tạo
- Giải sgk Công nghệ 7 – Chân trời sáng tạo
- Lý thuyết Công nghệ 7 – Chân trời sáng tạo
- Giải sbt Công nghệ 7 – Chân trời sáng tạo
- Giải sgk Tin học 7 – Chân trời sáng tạo
- Lý thuyết Tin học 7 – Chân trời sáng tạo
- Giải sbt Tin học 7 – Chân trời sáng tạo
- Giải sbt Hoạt động trải nghiệm 7 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 7 – Chân trời sáng tạo
- Giải sgk Giáo dục thể chất 7 – Chân trời sáng tạo
- Giải sgk Âm nhạc 7 – Chân trời sáng tạo