Khai triển (z^2+1+1/z)^4

Lời giải Bài 8.17 trang 57 SBT Toán 10 Tập 2 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

1 412 09/12/2022


Giải SBT Toán 10 Kết nối tri thức Bài 25: Nhị thức Newton

Bài 8.17 trang 57 SBT Toán 10 Tập 2: Khai triển z2+1+1z4.

Lời giải:

Trước hết, ta sử dụng công thức khai triển của (a + b)4 với a = z2 + 1 và b=1z .

Sau đó, ta sử dụng các công thức khai triển của (a + b)4, (a + b)3, (a + b)2 với a = z2, b = 1 để có:

z2+14=C40.(z2)4+C41.(z2)3.1+C42.(z2)2.12+C43.z2.13+C44.14

= z8 + 4z6 + 6z4 + 4z2 + 1

z2+13=C30.(z2)3+C31.(z2)2.1+C32.z2.12+C33.13

= z6 + 3z4 + 3z2 + 1

(z2 + 1)2 = z4 + 2z2 + 1

Vậy ta có:

z2+1+1z4=z2+1+1z4=C40.z2+14+C41z2+131z+C42z2+121z2+C43z2+11z3+C441z4=z2+14+4z2+131z+6z2+121z2+4z2+11z3+1z4=z8+4z6+6z4+4z2+1+4z6+3z4+3z2+11z+6z4+2z2+11z2+4z2+11z3+1z4=z8+4z6+4z5+6z4+12z3+10z2+12z+13+8z+6z2+4z3+1z4

Xem thêm các bài giải sách giáo khoa Toán 10 bộ sách Kết nối tri thức hay, chi tiết khác:

Bài 8.13 trang 57 SBT Toán 10 Tập 2: Khai triển các đa thức... 

Bài 8.14 trang 57 SBT Toán 10 Tập 2: Trong khai triển của (5x – 2)5, số mũ của x được sắp xếp... 

Bài 8.15 trang 57 SBT Toán 10 Tập 2: Hãy sử dụng ba số hạng đầu tiên trong khai triển của (1... 

Bài 8.16 trang 57 SBT Toán 10 Tập 2: Xác định hạng tử không chứa x trong khai triển của... 

1 412 09/12/2022


Xem thêm các chương trình khác: