Xét chiều biến thiên và tìm các cực trị (nếu có) của các hàm số sau: a) y = x^3 - 3x^2 + 3x - 1

Lời giải Bài 1.40 trang 43 Toán 12 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12.

1 1,005 09/06/2024


Giải Toán 12 Kết nối tri thức Bài tập cuối chương 1 trang 42

Bài 1.40 trang 43 Toán 12 Tập 1: Xét chiều biến thiên và tìm các cực trị (nếu có) của các hàm số sau:

a) y=x33x2+3x1;

b) y=x42x21;

c) y=2x13x+1;

d) y=x2+2x+2x+1.

Lời giải:

a) Tập xác định: D=R.

Ta có: y=3x26x+3=3(x1)2,y=0x=1

Lập bảng biến thiên của hàm số:

Tài liệu VietJack

Hàm số y=x33x2+3x1 đồng biến trên khoảng (;1)(1;+).

Hàm số y=x33x2+3x1 không có cực trị.

b) Tập xác định của hàm số là D=R.

Ta có: y=4x34x,y=04x34x=0[x=0x=±1

Bảng biến thiên:

Tài liệu VietJack

Từ bảng biến thiên ta có:

Hàm số y=x42x21 đồng biến trên khoảng (1;0)(1;+).

Hàm số y=x42x21 nghịch biến trên khoảng (;1)(0;1).

Hàm số y=x42x21 đạt cực đại tại x=0 và .

Hàm số y=x42x21 đạt cực tiểu tại x=±1yCT=2.

c) Tập xác định: D=R{13}.

Ta có: y=2(3x+1)3(2x1)(3x+1)2=5(3x+1)2>0x13

Lập bảng biến thiên của hàm số:

Tài liệu VietJack

Từ bảng biến thiên ta có:

Hàm số y=2x13x+1 đồng biến trên (;13)(13;+).

Hàm số không có cực trị.

d) Tập xác định: D=R{1}.

Ta có: y=(2x+2)(x+1)(x2+2x+2)(x+1)2=x2+2x(x+1)2

y=0[x=0x=2 (thỏa mãn)

Lập bảng biến thiên của hàm số:

Tài liệu VietJack

Từ bảng biến thiên ta có:

Hàm số y=x2+2x+2x+1 đồng biến trên khoảng (;2)(0;+).

Hàm số y=x2+2x+2x+1 nghịch biến trên khoảng (2;1)(1;0).

Hàm số y=x2+2x+2x+1 đạt cực đại tại x=2 và .

Hàm số y=x2+2x+2x+1 đạt cực tiểu tại x=0yCT=2.

1 1,005 09/06/2024


Xem thêm các chương trình khác: