Sách bài tập Toán 9 Bài 5 (Kết nối tri thức): Bất đẳng thức và tính chất
Với giải sách bài tập Toán 9 Bài 5: Bất đẳng thức và tính chất sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 9 Bài 5.
Giải SBT Toán 9 Bài 5: Bất đẳng thức và tính chất
Bài 2.7 trang 25 sách bài tập Toán 9 Tập 1: Khi đi trên tuyến cao tốc Thành phố Hồ Chí Minh – Trung Lương, chúng ta thấy biển báo giao thông báo hiệu giới hạn tốc độ mà xe ô tô được phép đi trong điều kiện bình thường. Hãy viết các bất đẳng thức để mô tả tốc độ cho phép của ô tô
a) ở làn ngoài cùng bên trái và ở làn giữa;
b) ở làn ngoài cùng bên phải.
Lời giải:
Gọi x (km/h) là tốc độ cho phép của ô tô trên cao tốc Thành phố Hồ Chí Minh – Trung lương trong điều kiện bình thường. Khi đó ta có:
a) 60 ≤ x và x ≤ 100 hay 60 ≤ x ≤ 100.
b) 50 ≤ x và x ≤ 80 hay 50 ≤ x ≤ 80.
Bài 2.8 trang 25 sách bài tập Toán 9 Tập 1: Viết bắt đẳng thức để mô tả tình huống sau:
a) Bạn phải ít nhất 18 tuổi mới được đi bầu cử đại biểu Quốc hội.
b) Một thang máy chở được tối đa 700 kg.
c) Bạn phải mua hàng có tổng giá trị ít nhất 1 triệu đồng mới được giảm giá.
d) Bạn phải ném vào rổ ít nhắt 5 quả bóng mới vào được đội tuyển bóng rổ.
Lời giải:
a) Gọi số tuổi của một người là t (tuổi). Để người đó được đi bầu cử đại biểu quốc hội thì t ≥ 18.
b) Gọi x (kg) là khối lượng hàng hóa mà thang máy chở được. Khi đó x ≤ 700.
c) Gọi a (đồng) là số tiền mua hàng. Để được giảm giá thì a ≥ 1 000 000.
d) Gọi y là số bóng được ném vào rổ.
Để được tham gia vào đội tuyển bóng rổ thì y ≥ 5.
Bài 2.9 trang 25 sách bài tập Toán 9 Tập 1: So sánh:
a) và ;
b) và .
Lời giải:
a) Ta có ; .
Ta thấy , do đó .
b) Ta có ;
;
2024 < 2025.
Ta thấy .
Do đó .
Bài 2.10 trang 25 sách bài tập Toán 9 Tập 1: Cho a > b, hãy so sánh:
a) 20a + 5b và 20b + 5a;
b) –3(a + b) – 1 và –6b – 1.
Lời giải:
a) Vì a > b nên 15a > 15b
15a + 5a + 5b > 15b + 5a + 5b
20a + 5b > 20b + 5a
Vậy 20a + 5b > 20b + 5a.
b) Vì a > b nên –3a < –3b
–3a – 3b – 1< –3b – 3b – 1
–3(a + b) – 1 < –6b – 1
Vậy –3(a + b) – 1 < –6b – 1.
Bài 2.11 trang 25 sách bài tập Toán 9 Tập 1: Cho a > b > 0, chứng minh rằng
a) a2 > ab và ab > a2;
b) a2 > b2 và a3 > b3.
Chú ý: Tính chất "Với a > b > 0 thì a2 > b2 và a3 > b3" thường hay dùng trong nhiều bài toán chứng minh bất đẳng thức.
Lời giải:
a) Vì a > b > 0 nên:
⦁ a . a > b . a hay a2 > ab.
⦁ a . b > b . b hay ab > b2.
Vậy với a > b > 0 thì a2 > ab và ab > a2.
b) Theo câu a ta có:
a2 > ab > b2, suy ra a2 > b2.
Vì a2 > b2 nên:
⦁ a2 . a > b2 . a hay a3 > ab2.
⦁ b2 . a > b2 . b hay ab2 > b3.
Suy ra a3 > ab2 > b3 hay a3 > b3.
Vậy với a > b > 0 thì a3 > b3.
Bài 2.12 trang 25 sách bài tập Toán 9 Tập 1: Chứng minh rằng với mọi số a, b ta có
Lời giải:
Xét hiệu ta được:
Vì (a + b)2 ≥ 0 nên hay , suy ra .
Vậy với mọi số a, b ta có .
Bài 2.13 trang 25 sách bài tập Toán 9 Tập 1: Chứng minh rằng: Trong ba số tự nhiên liên tiếp thì bình phương số đứng giữa lớn hơn tích hai số còn lại.
Lời giải:
Gọi ba số tự nhiên liên tiếp là n – 1, n và n + 1.
Ta có n2 – (n + 1)(n – 1) = n2 – (n2 – 1) = 1 > 0.
Suy ra n2 – (n + 1)(n – 1) > 0, hay n2 > (n + 1)(n – 1).
Vậy trong ba số tự nhiên liên tiếp thì bình phương số đứng giữa lớn hơn tích hai số còn lại.
Lý thuyết Bất đẳng thức và tính chất
1. Bất đẳng thức
1.1. Nhắc lại thứ tự trên tập hợp số thực
– Trên tập số thực, với hai số a và b có ba trường hợp sau:
• Số a bằng số b, kí hiệu a = b;
• Số a lớn hơn số b, kí hiệu a > b;
• Số a nhỏ hơn số b, kí hiệu a < b.
Ví dụ 1.Thay trong các biểu thức sau bằng dấu thích hợp (=,>,<).
a)
b)
c)
Hướng dẫn giải
a)
b)
c)
– Khi biểu diễn số thực trên trục số, điểm biểu diễn số bé hơn nằm trước điểm biểu diễn số lớn hơn.
• Số a lớn hơn hoặc bằng số b, tức là a > b hoặc a = b, kí hiệu a ≥ b;
• Số a nhỏ hơn hoặc bằng số b, tức là a < b hoặc a = b, kí hiệu a ≤ b.
Ví dụ 2. Vì nên khi biểu diễn trên trục số thì điểm biểu diễn số nằm bên trái điểm biểu diễn số .
1.2. Khái niệm bất đẳng thức
Ta gọi hệ thức dạng a > b (hay a < b, a ≥ b, a ≤ b), được gọi là bất đẳng thức và a được gọi là vế trái, b được gọi là vế phải của bất đẳng thức.
Ví dụ 3. Xác định vế trái và vế phải của bất đẳng thức sau:
a) –6 < –4;
b) a2 + 5 ≥ 0.
Hướng dẫn giải
a) Vế trái là –6, vế phải là –4;
b) Vế trái là a2 + 5, vế phải là 0.
1.3. Tính chất bắc cầu
Bất đẳng thức có tính chất quan trọng sau:
Nếu a < b và b < c thì a < c (tính chất bắc cầu của bất đẳng thức).
Chú ý: Tương tự, các thứ tự lớn hơn (>), lớn hơn hoặc bằng (≥), nhỏ hơn hoặc bằng (≤) cũng có tính chất bắc cầu.
Ví dụ 4. Chứng minh
Hướng dẫn giải
Ta có ;
Do đó (điều phải chứng minh).
2. Liên hệ giữa thứ tự và phép cộng
Khi cộng cùng một số vào cả hai vế của một bất đẳng thức ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.
Với ba số a, b và c, ta có:
• Nếu a < b thì a + c < b + c.
• Nếu a ≤ b thì a + c ≤ b + c.
• Nếu a > b thì a + c > b + c.
• Nếu a ≥ b thì a + c ≥ b + c.
Ví dụ 5. Không thực hiện phép tính, hãy so sánh 2 025 + (–26) và 2 024 + (–26).
Hướng dẫn giải
Vì 2 025 > 2 024 nên
2 025 + (–26) > 2 024 + (–26). ← Cộng hai vế với cùng một số (–26).
3. Liên hệ giữa thứ tự và phép nhân
− Khi nhân cả hai vế của một bất đẳng thức với cùng một số dương thì được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.
Với ba số a, b và c > 0, ta có:
• Nếu a < b thì ac < bc;
• Nếu a ≤ b thì ac ≤ bc;
• Nếu a > b thì ac > bc;
• Nếu a ≥ b thì ac ≥ bc.
− Khi nhân cả hai vế của một bất đẳng thức với cùng một số âm thì được một bất đẳng thức mới ngược chiều với bất đẳng thức đã cho.
Với ba số a, b và c > 0, ta có:
• Nếu a < b thì ac > bc;
• Nếu a ≤ b thì ac ≥ bc;
• Nếu a > b thì ac < bc;
• Nếu a ≥ b thì ac ≤ bc.
Ví dụ 6. Thay trong các biểu thức sau bởi dấu thích hợp (<, >) để được khẳng định đúng.
a)
b)
Hướng dẫn giải
a) Ta có –11,5 < 2,2 và 35 > 0 nên 35 . (–11,5) < 35 . 2,2.
Vậy
b) Ta có –11,5 < 2,2 và –35 < 0 nên (–35) . (–11,5) > (–35) . 2,2.
Vậy
Xem thêm các chương trình khác:
- Soạn văn 9 Kết nối tri thức (hay nhất)
- Văn mẫu 9 - Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn 9 – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn 9 - Kết nối tri thức
- Bố cục tác phẩm Ngữ văn 9 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn 9 – Kết nối tri thức
- Soạn văn 9 Kết nối tri thức (ngắn nhất)
- Bài tập Tiếng Anh 9 Global success theo Unit có đáp án
- Giải sgk Tiếng Anh 9 - Global success
- Trọn bộ Từ vựng Tiếng Anh 9 Global success đầy đủ nhất
- Trọn bộ Ngữ pháp Tiếng Anh 9 Global success đầy đủ nhất
- Giải sbt Tiếng Anh 9 – Global Success
- Giải sgk Khoa học tự nhiên 9 – Kết nối tri thức
- Lý thuyết Khoa học tự nhiên 9 – Kết nối tri thức
- Giải sbt Khoa học tự nhiên 9 – Kết nối tri thức
- Giải sgk Lịch sử 9 – Kết nối tri thức
- Giải sbt Lịch sử 9 – Kết nối tri thức
- Giải sgk Địa lí 9 – Kết nối tri thức
- Giải sbt Địa lí 9 – Kết nối tri thức
- Giải sgk Tin học 9 – Kết nối tri thức
- Giải sbt Tin học 9 – Kết nối tri thức
- Giải sgk Công nghệ 9 – Kết nối tri thức
- Giải sgk Giáo dục công dân 9 – Kết nối tri thức
- Giải sbt Giáo dục công dân 9 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 9 – Kết nối tri thức