Sách bài tập Toán 7 Bài 3 (Chân trời sáng tạo): Tam giác cân

Với giải sách bài tập Toán 7 Bài 3: Tam giác cân sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 Bài 3.

1 986 01/01/2023


Giải sách bài tập Toán lớp 7 Bài 3: Tam giác cân

Bài 1 trang 49 SBT Toán 7 Tập 2: Cho tam giác MNP cân tại M. Kể tên các cạnh bên, cạnh đáy, góc ở đỉnh, góc ở đáy của tam giác cân đó.

Lời giải

Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Tam giác cân (ảnh 1)

Tam giác MNP cân tại M có: các cạnh bên là MN và MP; cạnh đáy là NP; góc ở đỉnh là M^; góc ở đáy là N^ P^.

Bài 2 trang 49 SBT Toán 7 Tập 2:  

a) Tam giác có hai góc bằng 6 có phải là tam giác cân hay không? Hãy tìm góc còn lại của tam giác này.

b) Tam giác có hai góc bằng 45° có phải là tam giác cân hay không? Hãy tìm góc còn lại của tam giác này.

Lời giải

a) Giả sử tam giác ABC có B^=C^=60° như hình vẽ dưới đây:

Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Tam giác cân (ảnh 1)

Xét ABC có: A︿+B︿+C︿=180° (định lí tổng ba góc trong một tam giác)

Suy ra A^=180°C^B^

Do đó A︿=180°60°60°=60°

Tam giác ABC có A^=B^=C^=60° nên là tam giác đều.

Vậy tam giác có hai góc bằng 60° thì góc còn lại là 60°. Tam giác này vừa là tam giác đều vừa là tam giác cân tại cả ba đỉnh.

b) Giả sử tam giác MNP có N^=P^=45° như hình vẽ dưới đây.

Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Tam giác cân (ảnh 1)

Tam giác MNP có N^=P^=45° nên là tam giác cân tại M.

Xét MNP có: M︿+N︿+P︿=180° (định lí tổng ba góc trong một tam giác).

Suy ra M^=180°N^P^

Do đó M︿=180°45°45°=90°

Tam giác MNP cân tại M có M^=90° nên là vừa là tam giác cân vừa là tam giác vuông.

Vậy tam giác có hai góc bằng 45° thì góc còn lại là 90°. Tam giác này là tam giác vuông cân.

Bài 3 trang 49 SBT Toán 7 Tập 2: 

Trong Hình 6, tính góc B và góc C biết A^=138°. 

Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Tam giác cân (ảnh 1)

Lời giải

ABC có AB = AC (giả thiết) nên ABC cân tại A.

Suy ra C︿=B︿ (tính chất tam giác cân).

Xét ABC có: A︿+B︿+C︿=180° (định lí tổng ba góc trong một tam giác)

Suy ra B^=C^=180°A^2=180°138°2=21°.

Vậy C︿=B︿=21°.

Bài 4 trang 49 SBT Toán 7 Tập 2:

Cho Hình 7, biết AB = AC và BE là tia phân giác của ABC^; CF là tia phân giác của ACB^. Chứng minh rằng:

a) ΔABE = ΔACF;

b) Tam giác OEF cân.

Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Tam giác cân (ảnh 1)

Lời giải

GT

ABC AB = AC,

BE là tia phân giác của ABC^,

CF là tia phân giác của ACB^.

KL

a) ΔABE = ΔACF;

b) Tam giác OEF cân.

Chứng minh (Hình 7):

a) Vì AB = AC (giả thiết) nên tam giác ABC cân tại A.

Suy ra ABC^=ACB^ (tính chất)          (1)

Ta có BE là tia phân giác của ABC^ (giả thiết)

Nên ABE^=EBC^=12ABC^ (tính chất tia phân giác) (2)

Lại có CF là tia phân giác của ACB^ (giả thiết)

Nên ACF^=FCB^=12ACB^ (tính chất tia phân giác) (3)

Từ (1), (2), (3) suy ra ACF^=FCB^=ABE^=EBC^.

Xét ΔABE và ΔACF có:

A^ là góc chung,

AB = BC (giả thiết),

ABE^=ACF^ (chứng minh trên).

Do đó ΔABE = ΔACF (g.c.g).

Vậy ΔABE = ΔACF.

b)ΔABE = ΔACF (chứng minh câu a).

n BE = CF (hai cạnh tương ứng).

Xét ΔOBC có OBC^=OCB^ (do EBC^=FCB^)

Do đó ΔOBC cân tại O.

Suy ra OB = OC (tính chất tam giác cân).

Ta có: BE = OB + OE, CF = OC + OF.

Mà BE = CF, OB = OC (chứng minh trên).

Suy ra OE = OF

Do đó ΔOEF cân tại O.

Vậy tam giác OEF cân tại O.

Bài 5 trang 49 SBT Toán 7 Tập 2:   

Cho tam giác MEF cân tại M có M^=80°.

a) Tính E^,  F^. 

b) Gọi N, P lần lượt là trung điểm của ME, MF. Chứng minh rằng tam giác MNP cân.

c) Chứng minh rằng NP // EF

Lời giải

Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Tam giác cân (ảnh 1)

Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Tam giác cân (ảnh 1)

a)MFE cân tại M (giả thiết).

Nên E︿=F︿ (tính chất tam giác cân).

Xét MEF có: M︿+E︿+F︿=180° (định lí tổng ba góc trong một tam giác)

Suy ra E^=F^=180°M^2=180°80°2=50°.

Vậy E︿=F︿=50°.

b) Vì MEF cân tại M (giả thiết) nên ME = MF     (1)

N là trung điểm của ME nên MN=NE=ME2   (2)

Vì P là trung điểm của MF nên MP=PF=MF2      (3)

Từ (1), (2), (3) suy ra MN = NE = MP = PE.

Tam giác MNP có MN = MP (chứng minh trên)

Do đó tam giác MNP cân tại M.

Vậy tam giác MNP cân tại M.

c) Vì tam giác MNP cân tại M (chứng minh câu b).

Nên MNP^=MPN^ (tính chất tam giác cân)

Xét MNP có: M^+MNP^+MPN^=180° (định lí tổng ba góc trong một tam giác).

Suy ra MNP^=MPN^=180°M^2=180°80°2=50°.

Ta có MNP^=E^ (cùng bằng 50°).

Mà hai góc này ở vị trí đồng vị.

Suy ra NP // EF

Vậy NP // EF.

Bài 6 trang 50 SBT Toán 7 Tập 2:   

Cho tam giác ABC vuông cân tại A. Tia phân giác của góc B cắt AC tại N, tia phân giác của góc C cắt AB tại M. Gọi O là giao điểm của BN và CM.

Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Tam giác cân (ảnh 1)

a) Tính số đo các góc OBC, OCB.

b) Chứng minh rằng tam giác OBC cân.

c) Tính số đo góc BOC.

Lời giải

Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Tam giác cân (ảnh 1)

Sách bài tập Toán 7 Bài 3 (Kết nối tri thức): Tam giác cân (ảnh 1)

a) Vì ABC vuông cân tại A (giả thiết)

Nên ABC^=ACB^=45°

BN là tia phân giác của ABC^ (giả thiết)

Nên ABN^=NBC^=12ABC^=45°2=22,5° 

Hay OBC^=22,5°

Vì CM là tia phân giác của ACB^ (giả thiết)

Nên ACM^=MCB^=12ACB^=45°2=22,5° 

Hay OCB^=22,5°

Vậy OBC^=22,5°;OCB^=22,5°.

b) Xét ∆OBC có OBC^=OCB^ (cùng bằng 22,5°).

Nên tam giác OBC cân tại O.

Vậy tam giác OBC cân tại O.

c) Xét OBC có: OBC^+OCB^+BOC^=180° (tổng ba góc trong một tam giác).

Nên BOC^=180°OBC^OCB^

Suy ra BOC^=180°22,5°22,5°=135°

Vậy BOC^=135°.

Xem thêm lời giải sách bài tập Toán lớp 7 bộ sách Chân trời sáng tạo hay, chi tiết nhất:

Bài 4: Đường vuông góc và đường xiên

Bài 5: Đường trung trực của một đoạn thẳng

Bài 6: Tính chất ba đường trung trực của tam giác

Bài 7: Tính chất ba đường trung tuyến của tam giác

Bài 8: Tính chất ba đường cao của tam giác

1 986 01/01/2023


Xem thêm các chương trình khác: