Sách bài tập Toán 7 Bài 5 (Chân trời sáng tạo): Đường trung trực của một đoạn thẳng
Với giải sách bài tập Toán 7 Bài 5: Đường trung trực của một đoạn thẳng sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 Bài 5.
Giải sách bài tập Toán lớp 7 Bài 5: Đường trung trực của một đoạn thẳng
Bài 1 trang 55 SBT Toán 7 Tập 2: Cho ba tam giác cân MAB, NAB, PAB có chung đáy AB. Chứng minh ba điểm M, N, P thẳng hàng.
Lời giải
Vì tam giác cân MAB có đáy AB nên cân tại M, do đó MA = MB.
Suy ra M thuộc đường trung trực của AB (1)
Tương tự với NAB và PAB có chung đáy AB, ta có: NA = NB, PA = PB.
Suy ra N, P cũng thuộc đường trung trực của AB (2)
Từ (1) và (2) ta có các điểm M, N, P cùng thuộc trung trực của AB.
Do đó M, N, P thẳng hàng.
Vậy ba điểm M, N, P thẳng hàng.
Bài 2 trang 55 SBT Toán 7 Tập 2: Cho góc xOy bằng 45° và điểm M nằm trong góc xOy. Vẽ điểm N sao cho Ox là trung trực của MN, vẽ điểm P sao cho Oy là trung trực của MP.
Lời giải
a) Ta có Ox là trung trực của MN (giả thiết).
Suy ra OM = ON (tính chất đường trung trực của một đoạn thẳng).
Vì Oy là trung trực của MP (giả thiết).
Nên OM = OP (tính chất đường trung trực của một đoạn thẳng).
Suy ra ON = OP (= OM).
Vậy ON = OP.
b) Gọi H và K lần lượt là trung điểm của MN và MP.
Xét tam giác ONH và tam giác OMH có:
ON = OM (chứng minh câu a),
NH = MH (do H là trung điểm của MN),
OH là cạnh chung.
Do đó ONH = OMH (c.c.c).
Suy ra (hai góc tương ứng).
Tương tự ta có: OKM = OKP (c.c.c).
Suy ra (hai góc tương ứng).
Ta có
Mà , (chứng minh trên).
Nên
Hay .
Vậy
Bài 3 trang 55 SBT Toán 7 Tập 2: Cho hai điểm A, B là vị trí của hai nhà máy cùng ở về một phía bờ sông là đường thẳng a. Vẽ điểm C sao cho a là trung trực của AC. Lấy điểm M tùy ý trên a.
Lời giải
a) Vì điểm M nằm trên trung trực của AC (giả thiết).
Suy ra MA = MC
Xét tam giác BMC có MC + MB ≥ BC (bất đẳng thức tam giác).
Hay MA + MB ≥ BC
Vậy MA + MB ≥ BC.
b) Vì MA + MB ≥ BC (chứng minh câu a).
Nên MA + MB ngắn nhất khi ba điểm B, C, M thẳng hàng.
Hay điểm M0 là giao điểm của đường thẳng BC và đường thẳng a.
Vậy điểm M0 cần tìm là giao điểm của đường thẳng BC và đường thẳng a.
Xem thêm lời giải sách bài tập Toán lớp 7 bộ sách Chân trời sáng tạo hay, chi tiết nhất:
Bài 6: Tính chất ba đường trung trực của tam giác
Bài 7: Tính chất ba đường trung tuyến của tam giác
Bài 8: Tính chất ba đường cao của tam giác
Xem thêm các chương trình khác:
- Soạn văn lớp 7 (hay nhất) – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 7 – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 7 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 7 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 7 – Chân trời sáng tạo
- Soạn văn lớp 7 (ngắn nhất) – Chân trời sáng tạo
- Văn mẫu lớp 7 – Chân trời sáng tạo
- Giải sgk Lịch sử 7 – Chân trời sáng tạo
- Lý thuyết Lịch Sử 7 – Chân trời sáng tạo
- Giải sbt Lịch sử 7 – Chân trời sáng tạo
- Giải sgk Địa lí 7 – Chân trời sáng tạo
- Lý thuyết Địa Lí 7 – Chân trời sáng tạo
- Giải sbt Địa lí 7 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 7 Friend plus – Chân trời sáng tạo
- Giải sbt Tiếng Anh 7 Friend plus– Chân trời sáng tạo
- Trọn bộ Từ vựng Tiếng Anh 7 Friends plus đầy đủ nhất
- Bài tập Tiếng Anh 7 Friends plus theo Unit có đáp án
- Giải sgk Khoa học tự nhiên 7 – Chân trời sáng tạo
- Lý thuyết Khoa học tự nhiên 7 – Chân trời sáng tạo
- Giải sbt Khoa học tự nhiên 7 – Chân trời sáng tạo
- Giải sgk Giáo dục công dân 7 – Chân trời sáng tạo
- Lý thuyết Giáo dục công dân 7 – Chân trời sáng tạo
- Giải sbt Giáo dục công dân 7 – Chân trời sáng tạo
- Giải sgk Công nghệ 7 – Chân trời sáng tạo
- Lý thuyết Công nghệ 7 – Chân trời sáng tạo
- Giải sbt Công nghệ 7 – Chân trời sáng tạo
- Giải sgk Tin học 7 – Chân trời sáng tạo
- Lý thuyết Tin học 7 – Chân trời sáng tạo
- Giải sbt Tin học 7 – Chân trời sáng tạo
- Giải sbt Hoạt động trải nghiệm 7 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 7 – Chân trời sáng tạo
- Giải sgk Giáo dục thể chất 7 – Chân trời sáng tạo
- Giải sgk Âm nhạc 7 – Chân trời sáng tạo