Lý thuyết Phép nhân và phép chia hết hai số nguyên – Toán lớp 6 Chân trời sáng tạo
Với lý thuyết Toán lớp 6 Bài 4: Phép nhân và phép chia hết hai số nguyên chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Chân trời sáng tạo sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 6.
A. Lý thuyết Toán 6 Bài 4: Phép nhân và phép chia hết hai số nguyên - Chân trời sáng tạo
1. Nhân hai số nguyên khác dấu
Quy tắc nhân hai số nguyên khác dấu
− Tích của hai số nguyên khác dấu luôn luôn là một số nguyên âm.
− Khi nhân hai số nguyên khác dấu, ta nhân số dương với số đối của số âm rồi thêm dấu trừ (−) trước kết quả nhận được.
Chú ý: Cho hai số nguyên dương a và b, ta có:
(+ a) . (−b) = − a . b
(− a) . (+ b) = − a . b
Ví dụ: Tính:
a) (−9) . 4;
b) 6 . (−11);
c) (−14) . 50.
Hướng dẫn giải
a) (−9) . 4 = −(9. 4) = − 36;
b) 6 . (−11) = − (6 . 11) = −66;
c) (−14) . 50 = − (14 . 50) = − 700.
2. Nhân hai số nguyên cùng dấu
Quy tắc nhân hai số nguyên cùng dấu
− Khi nhân hai số nguyên cùng dương, ta nhân chúng như nhân hai số tự nhiên.
− Khi nhân hai số nguyên cùng âm, ta nhân hai số đối của chúng.
Chú ý:
• Cho hai số nguyên dương a và b, ta có: (−a) . (−b) = (+a) . (+b) = a . b.
• Tích của hai số nguyên cùng dấu luôn luôn là một số nguyên dương.
Ví dụ: Tính:
a) 15 . 6;
b) (−55) . (−10);
c) (+22) . (+11).
Hướng dẫn giải
a) 15 . 6 = 90;
b) (−55) . (−10) = 55 . 10 = 550;
c) (+22) . (+11) = 22 . 11 = 242.
3. Tính chất của phép nhân các số nguyên
a) Tính chất giao hoán
Phép nhân hai số nguyên có tính chất giao hoán, nghĩa là:
a . b = b . a
Chú ý:
• a . 1 = 1 . a = a;
• a . 0 = 0 . a = 0.
• Cho hai số nguyên x, y:
Nếu x . y = 0 thì x = 0 hoặc y = 0.
Ví dụ: Nếu (a + 5) . (a – 14) = 0 thì
a + 5 = 0 hoặc a – 14 = 0.
Suy ra a = –5 hoặc a = 14.
b) Tính chất kết hợp
Phép nhân các số nguyên có tính chất kết hợp:
(a . b) . c = a . (b . c)
Chú ý: Áp dụng tính chất kết hợp của phép nhân, ta có thể viết tích của nhiều số nguyên:
a . b . c = a . (b . c) = (a . b) . c.
Ví dụ:
[(−4) . (−5)] . 8 = (−4) . [(−5) . 8]
= (−4) . (−5) . 8 = 4 . 5 . 8
= 20 . 8 = 160.
c) Tính chất phân phối của phép nhân đối với phép cộng
Phép nhân số nguyên có tính chất phân phối đối với phép cộng:
a(b + c) = ab + ac
Phép nhân số nguyên có tính chất phân phối đối với phép trừ:
a(b − c) = ab – ac
Ví dụ: Thực hiện phép tính:
(−5) . 29 + (−5) . (−99) + (−5) . (−30).
Hướng dẫn giải
(−5) . 29 + (−5) . (−99) + (−5) . (−30)
= (−5) . [29 + (−99) + (−30)]
= (−5) . [(−70) + (−30)]
= (−5) . (−100)
= 5 . 100
= 500.
4. Quan hệ chia hết và phép chia trong tập hợp số nguyên
Cho và b ≠ 0. Nếu có số nguyên q sao cho a = bq thì
• Ta nói a chia hết cho b, kí hiệu là a ⋮ b.
• Trong phép chia hết, dấu của thương hai số nguyên cũng giống như dấu của tích.
Ta gọi q là thương của phép chia a cho b, kí hiệu là a : b = q.
Ví dụ: Ta có: (−15) = 3 . (−5) nên ta nói:
• (−15) chia hết cho (−5);
• (−15) : (−5) = 3;
• 3 là thương của phép chia (−15) cho (−5).
5. Bội và ước của một số nguyên
Cho . Nếu a ⋮ b thì ta nói a là bội của b là b là ước của a.
Ví dụ: Ta có (−15) ⋮ (−5) nên ta nói (−15) là bội của (−5) và (−5) là ước của (−15).
Nếu c vừa là ước của a, vừa là ước của b thì c cũng được gọi là ước chung của a và b.
Ví dụ: Vì 4 vừa là ước của 8 vừa là ước của 12 nên 4 là ước chung của 8 và 12.
Bài tập tự luyện
Bài 1. Tính:
a) (−3) . 8;
b) (−14) . (−25);
c) (+12) . (−40);
Hướng dẫn giải
a) (−3) . 8 = − (3 . 8) = − 24;
b) (−14) . (−25) = 14 . 25 = 350;
c) (+12) . (−40) = − (12 . 40) = −480.
Bài 2: Tìm x, biết:
30(x + 2) − 6(x − 5) − 22x = 100.
Hướng dẫn giải
30(x + 2) − 6(x − 5) − 22x = 100
(30x + 60) − (6x − 30) − 22x = 100
30x + 60 − 6x + 30 − 22x = 100
30x – 6x − 22x = 100 – 60 − 30
2x = 10
x = 5
Vậy x = 5.
Bài 4: Tìm số nguyên a để 5 ⋮ (a – 1).
Hướng dẫn giải
Để 5 ⋮ (a – 1) () thì a – 1 Ư(5) = {−5; −1; 1; 5}.
Ta có bảng sau:
a – 1 |
−5 |
−1 |
1 |
5 |
a |
− 4 |
0 |
2 |
6 |
Vậy để 5 ⋮ (a – 1) thì a {− 4; 0; 2; 6}.
B. Trắc nghiệm Phép nhân và phép chia hết hai số nguyên (Chân trời sáng tạo 2023) có đáp án
Câu 1. Tính (−42).(−5) được kết quả là:
A. −210
B. 210
C. −47
D. 37
Đáp án: B
Giải thích:
Áp dụng quy tắc nhân hai số nguyên cùng dấu ta có:
(−42).(−5) = 42.5 = 210
Câu 2. Chọn câu sai.
A. (−5).25 = −125
B. 6.(−15) = −90
C. 125.(−20) = −250
D. 225.(−18) = −4050
Đáp án: C
Giải thích:
Đáp án A: (−5).25 = −125 nên A đúng.
Đáp án B: 66.(−15) = −90 nên B đúng.
Đáp án C: 125.(−20) = −2500 ≠ −250 nên CC sai.
Đáp án D: 225.(−18) = −4050 nên D đúng.
Câu 3. Chọn câu đúng.
A. (−20).(−5) = −100
B. (−50).(−12) = 600
C. (−18).25 = −400
D. 11.(−11) = −1111
Đáp án: B
Giải thích:
Đáp án A: (−20).(−5) = 100 nên A sai.
Đáp án B: (−50).(−12) = 600 nên B đúng.
Đáp án C: (−18).25 = −450 ≠ −400 nên C sai.
Đáp án D: 11.(−11) = −121 ≠ −1111 nên D sai.
Câu 4. Tích (−3).(−3).(−3).(−3).(−3).(−3).(−3) bằng
A. 38
B. −37
C. 37
D. (−3)8
Đáp án: B
Giải thích:
Ta có:
(−3).(−3).(−3).(−3).(−3).(−3).(−3)
= (−3)7
= −37
Câu 5. Tính nhanh (−5).125.(−8).20.(−2) ta được kết quả là
A. −200000
B. −2000000
C. 200000
D. −100000
Đáp án: A
Giải thích:
(−5).125.(−8).20.(−2)
= [125.(−8)].[(−5).20].(−2)
= −(125.8).[−(5.20)].(−2)
= (−1000).(−100).(−2)
= 100000.(−2)
= −200000
Câu 6. Chọn câu đúng.
A. (−23).(−16) > 23.(−16)
B. (−23).(−16) = 23.(−16)
C. (−23).(−16) < 23.(−16)
D. (−23).16 > 23.(−6)
Đáp án: A
Giải thích:
Đáp án A:
(−23).(−16) > 23.(−16) đúng vì VT > 0, VP < 0
Đáp án B:
(−23).(−16) = 23.(−16) sai vì VT > 0, VP < 0 nên VT ≠ VP
Đáp án C:
(−23).(−16) < 23.(−16) sai vì VT > 0, VP < 0 nên VT > VP
Đáp án D:
(−23).16 > 23.(−6) sai vì: (−23).16 = −368 và 23.(−6) = −138
mà −368 < −138 nên (−23).16 < 23.(−6)
Câu 7. Tính hợp lý A = −43.18 − 82.43 − 43.100
A. 0
B. −86000
C. −8600
D. −4300
Đáp án: C
Giải thích:
A = −43.18 − 82.43 − 43.100
A = 43.(−18 – 82 − 100)
A = 43.[−(18 + 82 + 100)]
A = 43.(−200)
A = −8600
Câu 8. Cho Q = −135.17 − 121.17 − 256.(−17), chọn câu đúng.
A. −17
B. 0
C. 1700
D. −1700
Đáp án: B
Giải thích:
Q = −135.17 − 121.17 − 256.(−17)
Q = −135.17 − 121.17 + 256.17
Q = 17.(−135 – 121 + 256)
Q = 17.(−256 + 256)
Q = 17.0
Q = 0
Câu 9. Cho (−4).(x − 3) = 20. Tìm x:
A. 8
B. −5
C. −2
D. Một kết quả khác
Đáp án: C
Giải thích:
Vì (−4).(−5) = 4.5= 20 nên để (−4).(x−3) = 20 thì x – 3 = −5
Khi đó ta có:
x −3 = −5
x = −5 + 3
x = −2
Vậy x = −2.
Câu 10. Tìm x∈Z biết (1 − 3x)3 = −8.
A. x = 1
B. x = −1
C. x = −2
D. Không có x
Đáp án: A
Giải thích:
(1−3x)3 = −8
(1−3x)3 = (−2)3
1 − 3x = −2
3x = 1 − (−2)
3x = 3
x = 3:3
x =1
Vậy x = 1
Xem thêm tóm tắt lý thuyết Toán lớp 6 sách Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 6 (hay nhất) - Chân trời sáng tạo
- Soạn văn lớp 6 (ngắn nhất) - Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn 6 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 6 – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 6 - Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn 6 - Chân trời sáng tạo
- Văn mẫu lớp 6 – Chân trời sáng tạo
- Giải sgk Địa Lí 6 – Chân trời sáng tạo
- Giải sbt Địa Lí 6 – Chân trời sáng tạo
- Lý thuyết Địa Lí 6 – Chân trời sáng tạo
- Giải sgk Lịch sử 6 – Chân trời sáng tạo
- Giải sbt Lịch sử 6 – Chân trời sáng tạo
- Lý thuyết Lịch sử lớp 6 – Chân trời sáng tạo
- Giải sgk GDCD 6 – Chân trời sáng tạo
- Giải sbt GDCD 6 – Chân trời sáng tạo
- Lý thuyết GDCD 6 – Chân trời sáng tạo
- Giải sgk Công nghệ 6 – Chân trời sáng tạo
- Giải sbt Công nghệ 6 – Chân trời sáng tạo
- Lý thuyết Công nghệ 6 – Chân trời sáng tạo
- Giải sgk Khoa học tự nhiên 6 – Chân trời sáng tạo
- Giải sbt Khoa học tự nhiên 6 – Chân trời sáng tạo
- Lý thuyết Khoa học tự nhiên 6 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 6 - Friends plus
- Trọn bộ Từ vựng Tiếng Anh 6 Friends plus đầy đủ nhất
- Ngữ pháp Tiếng Anh 6 Friends plus
- Giải sbt Tiếng Anh 6 - Friends plus
- Bài tập Tiếng Anh 6 Friends plus theo Unit có đáp án