Lý thuyết Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân – Toán lớp 6 Chân trời sáng tạo

Với lý thuyết Toán lớp 6 Bài 2: Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Chân trời sáng tạo sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 6.

1 774 27/04/2023


A. Lý thuyết Toán 6 Bài 2: Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân - Chân trời sáng tạo

1. Hình chữ nhật

Hình chữ nhật có:

+ Bốn đỉnh.

+ Hai cặp cạnh đối diện bằng nhau.

+ Hai cặp cạnh đối diện song song.

+ Bốn góc ở các đỉnh bằng nhau và bằng góc vuông.

+ Hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường.

Ví dụ:

Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân| Lý thuyết Toán lớp 6 Chân trời sáng tạo (ảnh 1)

Hình chữ nhật ABCD có:

Bốn đỉnh A, B, C, D.

Hai cặp cạnh đối diện bằng nhau: AB = CD; BC = AD.

Hai cặp cạnh đối diện song song: AB song song với CD; BC song song với AD.

Bốn góc ở đỉnh A, B, C, D bằng nhau và bằng góc vuông.

Hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường:

AC = BD và OA = OC; OB = OD.

Cách vẽ hình chữ nhật

Bước 1. Vẽ theo một cạnh góc vuông của ê ke đoạn thẳng AB có độ dài bằng 6 cm.

Bước 2. Đặt đỉnh góc vuông của ê ke trùng với điểm A và một cạnh ê ke nằm trên AB, vẽ theo cạnh kia của ê ke đoạn thẳng AD có độ dài bằng 9 cm.

Bước 3. Xoay ê ke rồi thực hiện tương tự như ở Bước 2 để được cạnh BC có độ dài bằng 9 cm.

Bước 4. Vẽ đoạn thẳng CD. Ta được hình chữ nhật ABCD.

Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân| Lý thuyết Toán lớp 6 Chân trời sáng tạo (ảnh 1)

2. Hình thoi

Hình thoi có:

+ Bốn đỉnh.

+ Bốn cạnh bằng nhau.

+ Hai cặp cạnh đối diện song song với nhau.

+ Hai đường chéo vuông góc với nhau.

Ví dụ:

Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân| Lý thuyết Toán lớp 6 Chân trời sáng tạo (ảnh 1)

Hình thoi ABCD có:

Bốn đỉnh A, B, C, D.

Bốn cạnh bằng nhau: AB = BC = CD = DA;

Hai cạnh đối AB và CD, AD và BC song song với nhau.

Hai đường chéo AC và BD vuông góc với nhau.

Cách vẽ hình thoi

Ví dụ: Dùng thước và compa vẽ hình thoi ABCD, biết AB = 5 cm và AC = 8 cm.

Hướng dẫn giải

Bước 1. Dùng thước vẽ đoạn thẳng AC = 8 cm.

Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân| Lý thuyết Toán lớp 6 Chân trời sáng tạo (ảnh 1)

Bước 2. Dùng compa vẽ một phần đường tròn tâm A bán kính 5 cm.

Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân| Lý thuyết Toán lớp 6 Chân trời sáng tạo (ảnh 1)

Bước 3. Dùng compa vẽ một phần đường tròn tâm C bán kính 5cm; phần đường tròn này cắt phần đường tròn tấm A vẽ ở Bước 2 tại các điểm B và D.

Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân| Lý thuyết Toán lớp 6 Chân trời sáng tạo (ảnh 1)

Bước 4. Dùng thước vẽ các đoạn thẳng AB, BC, CD, DA. Ta được hình thoi ABCD (như hình vẽ).

Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân| Lý thuyết Toán lớp 6 Chân trời sáng tạo (ảnh 1)

3. Hình bình hành

Hình bình hành có:

Bốn đỉnh.

Hai cặp cạnh đối diện bằng nhau.

Hai cặp cạnh đối diện song song.

Hai cặp góc đối diện bằng nhau.

Hai đường chéo cắt nhau tại trung điểm của mỗi đường.

Ví dụ:

Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân| Lý thuyết Toán lớp 6 Chân trời sáng tạo (ảnh 1)

Hình bình hành ABCD có:

Bốn đỉnh A, B, C, D.

Hai cặp cạnh đối diện bằng nhau: AB = CD; BC = AD.

Hai cặp cạnh đối diện song song: AB song song với CD; BC song song với AD.

Hai cặp góc đối diện bằng nhau: góc đỉnh A bằng góc đỉnh C; góc đỉnh B bằng góc đỉnh D.

Hai đường chéo cắt nhau tại trung điểm của mỗi đường: OA = OC; OB = OD.

Cách vẽ hình bình hành

Hình bình hành ABCD có hai cạnh là a và b.

Bước 1: Vẽ đoạn thẳng AB = a (cm).

Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân| Lý thuyết Toán lớp 6 Chân trời sáng tạo (ảnh 1)

Bước 2: Vẽ đường thẳng đi qua B. Lấy điểm C trên đường thẳng đó sao cho BC = b (cm).

Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân| Lý thuyết Toán lớp 6 Chân trời sáng tạo (ảnh 1)

Bước 3: Vẽ đường thẳng đi qua A và song song với cạnh BC, đường thẳng qua C và song song với AB. Hai đường thẳng này cắt nhau tại D, ta được hình bình hành ABCD.

Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân| Lý thuyết Toán lớp 6 Chân trời sáng tạo (ảnh 1)

4. Hình thang cân

Hình thang cân có:

+ Hai cạnh đáy song song.

Hai cạnh bên bằng nhau.

Hai góc kề một đáy bằng nhau.

Hai đường chéo bằng nhau.

Ví dụ:

Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân| Lý thuyết Toán lớp 6 Chân trời sáng tạo (ảnh 1)

Hình thang cân EFGH có:

- Hai cạnh đáy song song: EF song song với GH.

Hai cạnh bên bằng nhau: EH = FG.

- Hai góc kề một đáy bằng nhau: góc đỉnh E bằng góc đỉnh F, góc đỉnh G bằng góc đỉnh H.

Hai đường chéo bằng nhau: EG = FH.

Cách gấp hình thang cân

Bước 1: Gấp đôi một tờ giấy hình chữ nhật.

Bước 2: Vẽ một đoạn thẳng nối hai điểm tùy ý trên hai cạnh đối diện (cạnh không chứa nếp gấp). Cắt theo đường nét đứt như hình minh họa.

Bước 3: Mở tờ giấy ra ta được một hình thang cân.

Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân| Lý thuyết Toán lớp 6 Chân trời sáng tạo (ảnh 1)

Bài tập tự luyện

Bài 1. Vẽ hình chữ nhật ABCD, biết AB = 4 cm, AD = 6 cm.

Hướng dẫn giải

- Vẽ hai đoạn thẳng AB = 4 cm, AD = 6 cm và AB vuông góc với AD.

- Dựng đường thẳng qua B vuông góc với AB.

- Dựng đường thẳng qua D vuông góc với AD.

- Hai đường thẳng trên cắt nhau tại C. Ta được hình chữ nhật ABCD (như hình vẽ).

Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân| Lý thuyết Toán lớp 6 Chân trời sáng tạo (ảnh 1)

Bài 2. Vẽ hình bình hành MNPQ, biết: MN = 7 cm, NP = 5 cm.

Hướng dẫn giải

- Vẽ hai đoạn thẳng MN và NP như hình dưới sao cho MN = 7 cm, NP = 5 cm.

- Vẽ đường thẳng qua P song song với MN.

- Trên đường thẳng lấy điểm Q sao cho PQ = 7 cm.

- Nối Q với M ta được hình bình hành MNPQ (như hình vẽ).

Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân| Lý thuyết Toán lớp 6 Chân trời sáng tạo (ảnh 1)

Bài 3. Vẽ hình thoi MNPQ biết góc MNP bằng 60° và MN = 5 cm.

Hướng dẫn giải

- Vẽ đoạn thẳng MN = 5 cm.

Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân| Lý thuyết Toán lớp 6 Chân trời sáng tạo (ảnh 1)

- Vẽ góc MNP bằng và NP = 5 cm.

Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân| Lý thuyết Toán lớp 6 Chân trời sáng tạo (ảnh 1)

- Vẽ đường thẳng qua P song song với MN.

Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân| Lý thuyết Toán lớp 6 Chân trời sáng tạo (ảnh 1)

- Trên đường thẳng này lấy điểm Q sao cho PQ = 5 cm. 

Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân| Lý thuyết Toán lớp 6 Chân trời sáng tạo (ảnh 1)

- Nối Q với M ta được hình thoi MNPQ (như hình vẽ).

Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân| Lý thuyết Toán lớp 6 Chân trời sáng tạo (ảnh 1)

 

B. Trắc nghiệm Hình chữ nhật, Hình thoi, Hình bình hành, Hình thang cân (Chân trời sáng tạo 2023) có đáp án

Câu 1. Trong những khẳng định sau, khẳng định nào sai?

A. Hình bình hành có 4 đỉnh

B. Hình bình hành có bốn cạnh

C. Hình có bốn đỉnh là hình bình hành

D. Hình bình hành có hai cạnh đối song song

Đáp án: C

Giải thích:

Hình bình hành có 4 đỉnh, có bốn cạnh, hai cạnh đối song song => A, B, D đúng

Hình có bốn đỉnh chưa chắc là hình bình hành, ví dụ:

TOP 40 câu Trắc nghiệm Hình chữ nhật – Hình thoi – Hình bình hành – Hình thang cân có đáp án - Toán lớp 6 Chân trời sáng tạo (ảnh 1)

Câu 2. Cho hình chữ nhật ABCD, phát biểu nào đúng?

TOP 40 câu Trắc nghiệm Hình chữ nhật – Hình thoi – Hình bình hành – Hình thang cân có đáp án - Toán lớp 6 Chân trời sáng tạo (ảnh 1)

A. AB = AC

B. AC = DO

C. AC = BD

D. OB = AC

Đáp án: C

Giải thích:

Trong hình chữ nhật hai đường chéo bằng nhau nên AC = BD => Đáp án C đúng

Đáp án A sai do AB là cạnh, AC là đường chéo nên chúng không bằng nhau.

Đáp án B sai do AC là đường chéo, DO là một nửa đường chéo còn lại nên chúng không bằng nhau.

Đáp án D sai do OB là một nửa đường chéo, AC là đường chéo còn lại nên chúng không bằng nhau.

Câu 3.

TOP 40 câu Trắc nghiệm Hình chữ nhật – Hình thoi – Hình bình hành – Hình thang cân có đáp án - Toán lớp 6 Chân trời sáng tạo (ảnh 1)

Độ dài đáy của hình bình hành có chiều cao 24cm và diện tích là 432cm2 là:

A. 16cm

B. 17cm

C. 18cm

D. 19cm   

Đáp án: C

Giải thích:

Độ dài đáy của hình bình hành đó là:

          432:24 = 18(cm)

                             Đáp số: 18cm

Câu 4. Chọn phát biểu sai trong các phát biểu sau?

A. Hình thoi có bốn đỉnh

B. Hình thoi có hai cặp cạnh đối bằng nhau

C. Hình thoi có hai cặp cạnh đối song song

D. Hình có bốn đỉnh là hình thoi

Đáp án: D

Giải thích:

Hình có bốn đỉnh chưa chắc là hình thoi, ví dụ:

TOP 40 câu Trắc nghiệm Hình chữ nhật – Hình thoi – Hình bình hành – Hình thang cân có đáp án - Toán lớp 6 Chân trời sáng tạo (ảnh 1)

=> D sai.

Câu 5. Trong các hình sau, các hình là hình thoi là:

TOP 40 câu Trắc nghiệm Hình chữ nhật – Hình thoi – Hình bình hành – Hình thang cân có đáp án - Toán lớp 6 Chân trời sáng tạo (ảnh 1)

A. Hình 1, Hình 2

B. Hình 3, Hình 4

C. Hình 1, Hình 3

D. Hình 3, Hình 5

Đáp án: C

Giải thích:

Hình thoi là hình tứ giác có hai cặp cạnh đối diện song song và bốn cạnh bằng nhau.

=> Hình 1 và Hình 3 là hình thoi.

Câu 6.

TOP 40 câu Trắc nghiệm Hình chữ nhật – Hình thoi – Hình bình hành – Hình thang cân có đáp án - Toán lớp 6 Chân trời sáng tạo (ảnh 1)

Cho hình thoi ABCD (AC > BD) có AC = 10cm, khẳng định nào sau đây đúng:

A. OB = 5cm

B. AO = 5cm

C. OD = 5cm

D. OC = 20cm

Đáp án: B

Giải thích:

Do hai đường chéo của hình thoi cắt nhau tại trung điểm của mỗi đường nên

 AO = OC = 10:2 = 5cm

=> B đúng, C sai

Vì BD < AC nên OB=OD<102=5cm

=> A và C sai.

Câu 7. Trong các hình dưới đây, hình nào là hình thang cân:

A. Hình a

B. Hình b

C. Hình c

D. Hình d

Đáp án: B

Giải thích:

Quan sát hình ta thấy Hình b là hình thang cân.

Xem thêm tóm tắt lý thuyết Toán lớp 6 sách Chân trời sáng tạo hay, chi tiết khác:

1 774 27/04/2023


Xem thêm các chương trình khác: