28 câu trắc nghiệm: Cực trị của hàm số có đáp án
28 câu trắc nghiệm: Cực trị của hàm số có đáp án
-
304 lượt thi
-
28 câu hỏi
-
50 phút
Danh sách câu hỏi
Câu 1:
20/07/2024Cho hàm số y = f(x) có đồ thị như hình vẽ. Điểm cực đại của đồ thị hàm số là
Dựa vào định nghĩa cực trị.
Chọn đáp án A.
Câu 2:
22/07/2024Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên
Mệnh đề nào sau đây là đúng?
Dựa vào định nghĩa cực trị và bảng biến thiên.
Chọn đáp án D.
Câu 3:
19/07/2024Tìm a, b, c sao cho hàm số có giá trị bằng 0 khi x = 1 và đạt cực trị khi bằng 0 khi x = -1 .
Sử dụng giả thiết và điều kiện cần của cực trị ta có
y(1) = 0; y'(-1) = 0; y(-1) = 0
Trong đó ,
Từ đó suy ra:
Với a = 1; b = -1; c = -1 thì hàm số đã cho trở thành
Ta có nên hàm số đạt cực đại tại x = -1 .
Vậy a = 1; b = -1; c = -1 là các giá trị cần tìm.
Chọn đáp án C.
Câu 4:
19/07/2024Trong các mệnh đề sau, mệnh đề nào đúng?
Xem lại điều kiện cần và đủ để có cực trị của hàm số.
Chọn đáp án D.
Câu 5:
21/07/2024Tìm tất cả các giá trị của tham số m để hàm số đạt cực đại tại x = 1.
Ta có
Hàm số đạt cực trị tại x = 1 thì y'(1) = 0 ⇒
Với m = 1 thì hàm số đã cho trở thành
Ta có , y'' = 6x - 4 Vì y''(1) = 2 > 0 nên hàm số đạt cực tiểu tại x = 1.
Do vậy không có m thỏa mãn. Chọn đáp án D.
Chú ý. Sai lầm có thể gặp phải: khi giải y'(1) = 0 => m = 1 đã vội kết luận mà không kiểm tra lại, dẫn đến chọn đáp án B.
Câu 6:
13/07/2024Cho hàm số Điểm M(0; 3) là:
Ta có:
y''(0) = -4 < 0
Do đó, điểm M(0;3) là điểm cực đại của đồ thị hàm số.
Chọn đáp án C.
Chú ý. Phân biệt các khái niệm: cực trị, điểm cực trị của hàm số, điểm cực trị của đồ thị hàm số.
Câu 8:
19/07/2024Đồ thị hàm số y = |x| có dạng hình vẽ.
Có bao nhiêu mệnh đề đúng trong các phát biểu sau?
1. Hàm số không có đạo hàm tại x = 0.
2. Hàm số không liên tục tại x = 0.
3. Hàm số không có cực trị tại x = 0.
4. Hàm số đạt cực trị tại x = 0.
Đồ thị hàm số y = |x| có dạng hình vẽ.
Từ đồ thị trong hình ta có hàm số y = |x| liên tục tại x = 0 nhưng không có đạo hàm tại điểm đó.
Sử dụng định nghĩa cực trị ta có hàm số y = |x| đạt cực tiểu tại x = 0
Do đó mệnh đề 1 và 4 đúng.
Chọn đáp án C
Câu 9:
23/07/2024Cho hàm số
Hàm số có
Ta có
Xét y'=0 => x = 0
Hàm số chỉ có một cực đại tại x = 0. Chọn đáp án C.
Câu 11:
22/07/2024Cho hàm số f có đạo hàm là với mọi x ∈ R. Số điểm cực trị của hàm số f là:
Chọn B
Ta có
Bảng biến thiên
Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại x = 0. Vậy hàm số có một cực trị
Câu 12:
21/07/2024Điểm cực đại của hàm số là:
Chọn A
Ta có
Xét
y''(0) = -6 < 0; y''(-2) = 6 > 0
Do đó hàm số đạt cực đại tại x = 0
Câu 13:
16/07/2024Điểm cực tiểu của hàm số là:
Chọn C
Ta có:
y' = 0
y''(0) = 2 > 0. Do đó hàm số đạt cực tiểu tại x = 0
Câu 14:
13/07/2024Cho hàm số (1) và các mệnh đề
(1) Điểm cực trị của hàm số (1) là x = 0 hoặc x = 4/3
(2) Điểm cực trị của hàm số (1) là x = 0 và x = 4/3
(3) Điểm cực trị của đồ thị hàm số (1) là x = 0 và x = 4/3
(4) Cực trị của hàm số (1) là x = 0 và x = 4/3
Trong các mệnh đề trên, số mệnh đề sai là:
Chọn D
Ta có:
y''(0) = -4 < 0; y''(4/3) = 4 > 0. Do đó hàm số có hai cực trị là x = 0 và x = 4/3
Các mệnh đề (1); (2) và (3) sai;mệnh đề (4) đúng.
Câu 15:
21/07/2024Cho hàm số (2). Khẳng định nào sau đây là đúng?
Chọn D
Ta có:
y''(0) = -4 <0
y''(-1) = 8 > 0
y''(1) = 8 > 0
Do đó hàm số đạt cực đại tại x = 0 và có giá trị cực đại là y(0) = -2
Câu 16:
18/07/2024Hàm số y = cosx đạt cực trị tại những điểm
Chọn A
y' = -sinx;
y'' = -cosx.
y' = 0 <=> -sinx = 0 <=> x = kπ
y''(kπ) = ±1. Do đó hàm số đạt cực trị tại x = kπ
Câu 17:
22/07/2024Với giá trị nào của m, hàm số không có cực trị?
Chọn A
Hàm số không có cực trị <=> y’=0 vô nghiệm hoặc có nghiệm kép <=> Δ' ≤ 0 <=> <=>
Do đó hàm số không có cực trị khi
Câu 18:
15/07/2024Với giá trị nào của m, hàm số có một cực trị
Chọn A
Xét hàm số
TH1: m = 0 (1) trở thành y = -2x2 + 1
Hàm số y = luôn có 1 cực trị
Vậy với m = 0 hàm số luôn có một cực trị.
TH2: m ≠ 0.
Để hàm số (1) có một cực trị thì
vô nghiệm hoặc có nghiệm kép bằng 0
Kết hợp cả hai trường hợp ta có 0 ≤ m ≤ 1
Câu 19:
13/07/2024Giá trị của m để hàm số đạt cực đại tại x = 2 là:
Chọn B
Hàm số đạt cực đại tại x = 2 khi
Câu 20:
19/07/2024Với giá trị nào của m, hàm số đạt cực tiểu tại điểm có hoành độ x = 0?
Chọn B
Xét
Ta có:
Hàm số đạt cực tiểu tại điểm có hoành độ x = 0 khi
Câu 21:
18/07/2024Với giá trị nào của m, hàm số có hai điểm cực trị thỏa mãn
Chọn A
Ta có Hàm số có hai cực trị
=> y' = 0 có hai nghiệm phân biệt <=> Δ' > 0 <=>
<=>
Áp dụng Vi-ét cho phương trình y’ = 0 có hai nghiệm phân biệt ta có
Đối chiếu điều kiện có m = 5 hoặc m = 1
Câu 22:
15/07/2024Với giá trị nào của m, đồ thị hàm số có điểm cực đại B, điểm cực tiểu C thỏa mãn OC = 3OB, với O là gốc tọa độ?
Chọn A
Ta có
Hàm số có hai cực trị => y' = 0 có hai nghiệm phân biệt <=> Δ' > 0 <=> <=> 9 > 0 đúng với mọi m. Ta có điểm cực đại là B(m - 1; -2m + 2) và cực tiểu là C(m + 1; -2m - 2)
Câu 23:
15/07/2024Với giá trị nào của m, đồ thị hàm số có hai điểm cực trị B, C thẳng hàng với điểm A(-1;3)?
Chọn D
Hàm số có hai điểm cực trị => y’=0 có hai nghiệm phân biệt <=> m ≠ 0 (*)
Tọa độ hai điểm cực trị là B(0;m) và
;
A, B, C thẳng hàng
Câu 24:
20/07/2024Cho hàm số (C). Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số (C) là:
Chọn D
Cách 1: Ta có
Do đó đồ thị hàm số có điểm cực trị là và
Phương trình đường thẳng đi qua hai điểm cực trị là:
Cách 2: Ta có:
Gọi là nghiệm của phương trình Khi đó ta có là hai cực trị của đồ thị hàm số C với
Do đó ta có:
Vậy A, B thuộc đường thẳng y= - 6x+6.
Câu 25:
20/07/2024Cho hàm số Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số trên là:
Chọn A
Do đồ thị hàm số có hai điểm cực trị là A(-1;9) và B(3;-23).
Phương trình đường thẳng đi qua hai điểm cực trị là:
Câu 26:
20/07/2024Với giá trị nào của m, đường thẳng đi qua hai điểm cực trị của đồ thị hàm số tạo với đường thẳng Δ: 3x + y - 8 = 0 một góc ?
Chọn C
Ta có Hàm số có hai điểm cực trị <=> y’=0 có hai nghiệm phân biệt
<=> <=> m < 1 (*)
Chia y cho y’ ta được:
Giả sử là hai nghiệm phân biệt của y’=0
Phương trình đường thẳng đi qua hai điểm cực trị có dạng (d) : y= (2m-2)x+1
(d) có vectơ pháp tuyến là n1→ = (2m - 2; -1)
(Δ) : 3x+y-8=0 có vectơ pháp tuyến là n2→(3; 1)
Vì góc giữa đường thẳng (d) và (Δ) là 45o nên
Đối chiếu điều kiện (*) có
Câu 27:
16/07/2024Với giá trị nào của m, đồ thị hàm số có hai điểm cực trị đối xứng qua đường thẳng:
Chọn D
Hàm số có hai điểm cực trị => y’=0 có hai nghiệm phân biệt <=> <=>
Chia y cho y’ ta được:
Giả sử là hai nghiệm phân biệt của y’=0.
Phương trình đường thẳng đi qua hai điểm cực trị có dạng
(d) có vectơ pháp tuyến là
Vì hai điểm cực trị đối xứng với nhau qua (Δ) nên (d) ⊥ (Δ)
Thử lại khi m=0 ta có:
y''(0) = 6 > 0; y''(-2) = -6 < 0
Tọa độ hai điểm cực trị của đồ thị hàm số là O(0;0), A(-2;4)
Trung điểm của OA là I(-1;2).
Ta thấy I(-1,2) không thuộc đường thẳng (Δ) . Vậy không tồn tại m.
Câu 28:
15/07/2024Với giá trị nào của m, đồ thị hàm số có ba điểm cực trị tạo thành tam giác đều?
Chọn B
Hàm số có ba điểm cực trị => y’=0 có ba nghiệm phân biệt <=> m > 0.
Khi đó đồ thị hàm số có ba điểm cực trị là :
ΔABC đều khi AB = AC= BC
Ta có:
Đối chiếu với điều kiện tồn tại cực trị ta có là giá trị cần tìm.
Có thể bạn quan tâm
- Trắc nghiệm Cực trị hàm số (có đáp án) (813 lượt thi)
- Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1) (301 lượt thi)
- 28 câu trắc nghiệm: Cực trị của hàm số có đáp án (303 lượt thi)
- Trắc nghiệm Cực trị của hàm số có đáp án (P1) (Nhận biết) (393 lượt thi)
- Trắc nghiệm Cực trị của hàm số có đáp án (P1) (Thông hiểu) (296 lượt thi)
- Trắc nghiệm Cực trị của hàm số có đáp án (P1) (Vận dụng) (309 lượt thi)
- Trắc nghiệm Cực trị của hàm số có đáp án (P1) (264 lượt thi)
Các bài thi hot trong chương
- Trắc nghiệm Sự đồng biến, nghịch biến của hàm số (có đáp án) (837 lượt thi)
- Bài tập về Tính đơn điệu của hàm số có lời giải (723 lượt thi)
- Trắc nghiệm Giá trị lớn nhất. Giá trị nhỏ nhất của hàm số (có đáp án) (581 lượt thi)
- Trắc nghiệm Khảo sát sự biến thiên và vẽ đồ thị hàm số (có đáp án) (462 lượt thi)
- Trắc nghiệm Khảo sát sự biến thiên và vẽ đồ thị của hàm số có đáp án (Phần 1) (440 lượt thi)
- Trắc nghiệm Đường tiệm cận (có đáp án) (411 lượt thi)
- Trắc nghiệm Khảo sát sự biến thiên và vẽ đồ thị của hàm số (có đáp án) (380 lượt thi)
- Trắc nghiệm Đường tiệm cận có đáp án (373 lượt thi)
- 250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1) (366 lượt thi)
- Trắc nghiệm Ôn tập Chương 1 - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số (có đáp án) (364 lượt thi)