Giải Toán 12 trang 25 Tập 1 Kết nối tri thức

Với giải bài tập Toán 12 trang 25 Tập 1 trong Bài 3: Đường tiệm cận của đồ thị hàm số sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 12 trang 25 Tập 1.

1 341 08/06/2024


Giải Toán 12 trang 25 Tập 1

Bài 1.16 trang 25 Toán 12 Tập 1: Hình 1.26 là đồ thị của hàm số y=f(x)=2x2x21

Tài liệu VietJack

Sử dụng đồ thị này, hãy:
a) Viết kết quả của các giới hạn sau: limxf(x); limx+f(x); limx1f(x); limx1+f(x)
b) Chỉ ra các tiệm cận của đồ thị hàm số đã cho.

Lời giải:

a) limxf(x)=2; limx+f(x)=2; limx1f(x)=; limx1+f(x)=

b) Do đó, tiệm cận đứng của đồ thị hàm số là x=1;x=1.

Tiệm cận ngang của đồ thị hàm số là y=2

Bài 1.17 trang 25 Toán 12 Tập 1: Đường thẳng x=1 có phải là tiệm cận đứng của đồ thị hàm số y=x2+2x3x1 không?

Lời giải:

Ta có: limx1+f(x)=limx1+x2+2x3x1=limx1+(x1)(x+3)x1=limx1+(x+3)=4

limx1f(x)=limx1x2+2x3x1=limx1(x1)(x+3)x1=limx1(x+3)=4

Do đó, đường thẳng x=1 không là tiệm cận đứng của đồ thị hàm số y=x2+2x3x1.

Bài 1.18 trang 25 Toán 12 Tập 1: Tìm các tiệm cận của đồ thị hàm số sau:
a) y=3x2x+1;
b) y=2x2+x1x+2.

Lời giải:

a) Vìlimx+y=limx+3x2x+1=limx+3x12+1x=12;

limxy=limx3x2x+1=limx3x12+1x=12

Do đó, đường thẳng y=12 là tiệm cận ngang của đồ thị hàm số y=3x2x+1.

limx(12)y=limx(12)3x2x+1=;limx(12)+y=limx(12)+3x2x+1=+

Do đó, đường thẳng x=12 là tiệm cận đứng của đồ thị hàm số y=3x2x+1.

b) Vì limxy=limx2x2+x1x+2=limx[x(2+1x1x2)(1+2x)]=

limx+y=limx+2x2+x1x+2=limx+[x(2+1x1x2)(1+2x)]=+

Do đó, đồ thị hàm số y=2x2+x1x+2 không có tiệm cận ngang.

limx2y=limx22x2+x1x+2=;limx2+y=limx2+2x2+x1x+2=+

Do đó, đồ thị hàm số y=2x2+x1x+2 có tiệm cận đứng là x=2

Ta có: y=2x2+x1x+2=2x3+5x+2

limx+[f(x)(2x3)]=limx+[2x3+5x+2(2x3)]=limx+5x+2=0

limx[f(x)(2x3)]=limx[2x3+5x+2(2x3)]=limx5x+2=0

Do đó, đồ thị hàm số y=2x2+x1x+2 có tiệm cận xiên là: y=2x3.

Bài 1.19 trang 25 Toán 12 Tập 1: Một công ty sản xuất đồ gia dụng ước tính chi phí để sản xuất x (sản phẩm) là C(x)=2x+50 (triệu đồng). Khi đó, f(x)=C(x)x là chi phí sản xuất trung bình cho mỗi sản phẩm. Chứng tỏ rằng hàm số f(x) giảm và limx+f(x)=2. Tính chất này nói lên điều gì?

Lời giải:

Ta có: f(x)=C(x)x=2x+50x

f(x)=50x2<0 với mọi số thực x nên hàm số f(x)=C(x)x giảm.

limx+f(x)=limx+2x+50x=limx+2+50x1=2 (đpcm)

Tính chất này nói lên: Khi sản xuất càng nhiều sản phẩm thì chi phí sản xuất trung bình cho mỗi sản phẩm càng giảm, nhưng không dưới 2.

Bài 1.20 trang 25 Toán 12 Tập 1: Một mảnh vườn hình chữ nhật có diện tích bằng 144m2. Biết độ dài một cạnh của mảnh vườn là x (m).

a) Viết biểu thức tính chu vi P(x) (mét) của mảnh vườn.

b) Tìm các tiệm cận của đồ thị hàm số P(x).

Lời giải:

a) Độ dài cạnh còn lại của mảnh vườn là: 144x(m)

Chu vi của mảnh vườn là: P(x)=2(x+144x)=2x+288x(m)

b) Vì limx+P(x)=limx+(2x+288x)=+; limxP(x)=limx(2x+288x)=

Do đó, đồ thị hàm số P(x) không có tiệm cận ngang.

limx0y=limx0(2x+288x)=;limx0+y=limx0+(2x+288x)=+

Do đó, đồ thị hàm số P(x) có tiệm cận đứng là x=0.

Ta có: limx+[P(x)2x]=limx+(2x+288x2x)=limx+288x=0

Do đó, đồ thị hàm số P(x) có tiệm cận xiên là: y=2x.

Xem thêm các bài giải sách giáo khoa Toán 12 bộ sách Kết nối tri thức hay, chi tiết khác:

Giải Toán 12 trang 20 Tập 1

Giải Toán 12 trang 21 Tập 1

Giải Toán 12 trang 22 Tập 1

Giải Toán 12 trang 23 Tập 1

Giải Toán 12 trang 24 Tập 1

Giải Toán 12 trang 25 Tập 1

1 341 08/06/2024


Xem thêm các chương trình khác: