Giải Toán 12 trang 19 Tập 1 Kết nối tri thức

Với giải bài tập Toán 12 trang 19 Tập 1 trong Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 12 trang 19 Tập 1.

1 758 08/06/2024


Giải Toán 12 trang 19 Tập 1

Bài 1.10 trang 19 Toán 12 Tập 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau:

a) y=x2+4x+3;
b) y=x32x2+1 trên [0;+);
c) y=x22x+3x1 trên (1;+);
d) y=4x2x2.

Lời giải:

a) Ta có: y=x2+4x+3=(x2)2+77 với mọi số thực x.

Dấu “=” xảy ra khi x2=0x=2.

Do đó, maxf(x)=f(2)=7, hàm số không có giá trị nhỏ nhất.

b) GTLN, GTNN của y=x32x2+1 trên [0;+)

Ta có: y=3x24x,y=0[x=0(tm)x=43(tm)

Bảng biến thiên:

Tài liệu VietJack

Do đó, min[0;+)y=y(43)=527, hàm số không có giá trị lớn nhất.

c) Ta có: y=(2x2)(x1)(x22x+3)(x1)2=x22x1(x1)2

y=0x=1+2 (do x(1;+))

Tài liệu VietJack

Do đó, min(1;+)y=y(1+2)=22, hàm số không có giá trị lớn nhất trên (1;+).

d) Tập xác định của hàm số là: D=[0;2]

y=(4x2x2)24x2x2=44x24x2x2=2(1x)4x2x2

y=0x=1(tm)

y(0)=0;y(1)=2;y(2)=0

Do đó, max[0;2]y=y(1)=2,min[0;2]y=y(0)=y(2)=0

Bài 1.11 trang 19 Toán 12 Tập 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau:

a) y=x42x2+3;

b) y=x.ex;

c) y=xlnx;

d) y=x1+3x.

Lời giải:

a) y=x42x2+3

y=4x34x,y=04x34x=0[x=0x=±1

y(0)=3;y(1)=y(1)=2

Do đó, max(;+)y=y(0)=3,min(;+)y=y(1)=y(1)=2

b) Ta có:y=exx.ex,y=0exx.ex=0ex(1x)=0x=1

Bảng biến thiên:

Tài liệu VietJack

Do đó, max(;+)y=y(1)=1e, hàm số không có giá trị nhỏ nhất.

c) Tập xác định của hàm số là: D=(0;+)

y=lnx+x.1x=lnx+1,y=0lnx+1=0x=1e (thỏa mãn)

Bảng biến thiên:

Tài liệu VietJack

Hàm số không có giá trị lớn nhất, min(0;+)y=y(1e)=1e

d) Tập xác định của hàm số là [1;3].

y=12x1123x,y=012x1123x=03xx123xx1=0

3x=x13x=x1x=2(tm)

y(1)=2;y(2)=2;y(3)=2

Do đó, max[1;3]y=y(2)=2,min[1;3]y=y(1)=y(3)=2

Bài 1.12 trang 19 Toán 12 Tập 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau:

a) y=2x36x+3 trên đoạn [1;2];

b) y=x43x2+2 trên đoạn [0;3];

c) y=xsin2x trên đoạn [0;π];

d) y=(x2x)ex trên đoạn [0;1].

Lời giải:

a) Ta có: y=6x26,y=06x26=0x=±1 (thỏa mãn)

y(1)=7,y(1)=1,y(2)=7

Do đó, max[1;2]y=y(2)=y(1)=7,min[1;2]y=y(1)=1

b) Ta có: y=4x36x,y=04x36x=0x=0;x=62 (do x[0;3])

y(0)=2;y(62)=14;y(3)=56

Do đó, max[0;3]y=y(3)=56,min[0;3]y=y(62)=14

c) Ta có:y=12cos2x,y=012cos2x=0cos2x=12x=±π6+kπ(kZ)

x[0;π]x=π6;x=5π6

y(0)=0;y(π6)=π632;y(5π6)=5π6+32;y(π)=π

Do đó, max[0;π]y=y(5π6)=5π6+32,min[0;π]y=y(π6)=π632

d) y=(2x1)ex+(x2x)ex=ex(x2+x1)

y=0ex(x2+x1)=0x=1+52 (do x[0;1])

y(0)=0;y(1+52)=(25)e1+52;y(1)=0

Do đó, max[0;1]y=y(0)=y(1)=0,min[0;1]y=y(1+52)=(25)e1+52

Bài 1.13 trang 19 Toán 12 Tập 1: Trong các hình chữ nhật có chu vi là 24cm, hãy tìm hình chữ nhật có diện tích lớn nhất.

Lời giải:

Gọi chiều dài của hình chữ nhật là x (cm, 0<x<12)

Chiều rộng của hình chữ nhật là 12x(cm)

Diện tích của hình chữ nhật là: x(12x)=x2+12x(cm2)

Đặt S(x)=x2+12x,x(0;12)

S(x)=2x+12,S(x)=0x=6(tm)

Bảng biến thiên:

Tài liệu VietJack

Do đó, trong các hình có cùng chu vi thì hình chữ nhật có diện tích lớn nhất là 36cm2.

Bài 1.14 trang 19 Toán 12 Tập 1: Một nhà sản xuất muốn thiết kế một chiếc hộp có dạng hình hộp chữ nhật không có nắp, có đáy là hình vuông và diện tích bề mặt bằng 108cm2 như Hình 1.17. Tìm các kích thước của chiếc hộp sao cho thể tích của hộp là lớn nhất.

Tài liệu VietJack

Lời giải:

Hình hộp trên có độ dài cạnh đáy là x (cm, x>0) và chiều cao là h (cm, h>0)

Diện tích bề mặt của hình hộp là 108cm2 nên x2+4xh=108h=108x24x(cm)

Thể tích của hình hộp là: V=x2.h=x2.108x24x=108xx34(cm3)

Ta có: V=3x2+1084,V=0x=6 (do x>0)

Bảng biến thiên:

Tài liệu VietJack

Do đó, thể tích của hình hộp là lớn nhất khi độ dài cạnh đáy x=6cm

Khi đó, chiều cao của hình hộp là: 108624.6=3(cm).

Bài 1.15 trang 19 Toán 12 Tập 1: Một nhà sản xuất cần làm ra những chiếc bình có dạng hình trụ với dung tích 1000cm3. Mặt trên và mặt dưới của bình được làm bằng vật liệu có giá 1,2 nghìn đồng/cm2, trong khi mặt bên của bình được làm bằng vật liệu có giá 0,75 nghìn đồng/cm2. Tìm các kích thước của bình để chi phí vật liệu sản xuất mỗi chiếc bình là nhỏ nhất.

Lời giải:

Gọi bán kính đáy của bình là x (cm, x>0)

Chiều cao của bình là: 1000π.x2(cm)

Chi phí để sản xuất một chiếc bình là: T(x)=2.1,2.π.x2+0,75.2000x=2,4π.x2+1500x (nghìn đồng)

Để chi phí sản xuất mỗi chiếc bình là thấp nhất thì T(x) là nhỏ nhất.

T(x)=4,8πx1500x2,T(x)=0x=6252π3 (thỏa mãn)

Bảng biến thiên:

Tài liệu VietJack

Để chi phí sản xuất mỗi chiếc bình là nhỏ nhất thì bán kính đáy của bình là 6252π3cm và chiều cao của bình là: 1000π.(6252π3)2(cm)

Xem thêm các bài giải sách giáo khoa Toán 12 bộ sách Kết nối tri thức hay, chi tiết khác:

Giải Toán 12 trang 15 Tập 1

Giải Toán 12 trang 17 Tập 1

Giải Toán 12 trang 18 Tập 1

Giải Toán 12 trang 19 Tập 1

1 758 08/06/2024


Xem thêm các chương trình khác: