Giả sử sự lây lan của một loại virus ở một địa phương có thể được mô hình hóa bằng hàm số N(t) = -t^3 + 12t^2

Lời giải Vận dụng trang 18 Toán 12 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12.

1 11,646 08/06/2024


Giải Toán 12 Kết nối tri thức Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Vận dụng trang 18 Toán 12 Tập 1: Giả sử sự lây lan của một loại virus ở một địa phương có thể được mô hình hóa bằng hàm số N(t)=t3+12t2,0t12, trong đó N là số người bị nhiễm bệnh (tính bằng trăm người) và t là thời gian (tuần).

a) Hãy ước tính số người tối đa bị nhiễm bệnh ở địa phương đó.

b) Đạo hàm N’(t) biểu thị tốc độ lây lan của virus (còn gọi là tốc độ truyền bệnh). Hỏi virus sẽ lây lan nhanh nhất khi nào?

Lời giải:

a) Với 0t12 ta có:

N(t)=3t2+24t,N(t)=03t2+24t=0[t=0(tm)t=8(tm)

Ta có:N(0)=0,N(8)=83+12.82=256,N(12)=123+12.122=0

Do đó, số người tối đa bị nhiễm bệnh ở địa phương là 256 người trong 12 tuần đầu.

b) Hàm số biểu thị tốc độ độ lây lan của virus là: N(t)=3t2+24t

Đặt f(t)=3t2+24t, với 0t12

Ta có: f(t)=6t+24,f(t)=0t=4(tm)

f(0)=0,f(4)=3.42+24.4=48,f(12)=3.122+24.12=144

Do đó, virus sẽ lây lan nhanh nhất khi t=4 (tuần thứ 4).

1 11,646 08/06/2024


Xem thêm các chương trình khác: