Một nhà sản xuất muốn thiết kế một chiếc hộp có dạng hình hộp chữ nhật không có nắp, có đáy là hình vuông

Lời giải Bài 1.14 trang 19 Toán 12 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12.

1 2,198 08/06/2024


Giải Toán 12 Kết nối tri thức Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Bài 1.14 trang 19 Toán 12 Tập 1: Một nhà sản xuất muốn thiết kế một chiếc hộp có dạng hình hộp chữ nhật không có nắp, có đáy là hình vuông và diện tích bề mặt bằng 108cm2 như Hình 1.17. Tìm các kích thước của chiếc hộp sao cho thể tích của hộp là lớn nhất.

Tài liệu VietJack

Lời giải:

Hình hộp trên có độ dài cạnh đáy là x (cm, x>0) và chiều cao là h (cm, h>0)

Diện tích bề mặt của hình hộp là 108cm2 nên x2+4xh=108h=108x24x(cm)

Thể tích của hình hộp là: V=x2.h=x2.108x24x=108xx34(cm3)

Ta có: V=3x2+1084,V=0x=6 (do x>0)

Bảng biến thiên:

Tài liệu VietJack

Do đó, thể tích của hình hộp là lớn nhất khi độ dài cạnh đáy x=6cm

Khi đó, chiều cao của hình hộp là: 108624.6=3(cm).

1 2,198 08/06/2024


Xem thêm các chương trình khác: