Giải Toán 12 trang 17 Tập 1 Kết nối tri thức

Với giải bài tập Toán 12 trang 17 Tập 1 trong Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 12 trang 17 Tập 1.

1 191 08/06/2024


Giải Toán 12 trang 17 Tập 1

Luyện tập 1 trang 17 Toán 12 Tập 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau:

a) y=2xx2;

b) y=x+1x1 trên khoảng (1;+).

Lời giải:

a) Tập xác định của hàm số là [0;2].

Với x[0;2] ta có: y=(2xx2)22xx2=x+12xx2, y=0x+12xx2=0x=1(tm)

Lập bảng biến thiên của hàm số trên đoạn [0;2]:

5

Từ bảng biến thiên ta thấy: min[1;1]f(x)=f(0)=f(2)=0,max[1;1]f(x)=f(1)=1.

b) Với x(1;+) ta có:

Ta có: y=1+1(x1)2<0x(1;+)

limx1+y=limx1+(x+1x1)=+;limx+y=limx+(x+1x1)=

Lập bảng biến thiên của hàm số trên (1;+):

Tài liệu VietJack

Vậy hàm số không có giá trị lớn nhất, giá trị nhỏ nhất trên (1;+).

2. Cách tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn

HĐ2 trang 17 Toán 12 Tập 1: Xét hàm số y=f(x)=x32x2+1 trên đoạn [1;2], với đồ thị như Hình 1.16.

Tài liệu VietJack

a) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [1;2].

b) Tính đạo hàm f’(x) và tìm các điểm x(1;2)f(x)=0.

c) Tính giá trị của hàm số tại hai đầu mút của đoạn [1;2] và tại các điểm x đã tìm ở câu b. So sánh số nhỏ nhất trong các giá trị này với min[1;2]f(x), số lớn nhất trong các giá trị này với max[1;2]f(x).

Lời giải:

a) Nhìn vào đồ thị ta thấy, trên đoạn [1;2] ta có:

+ Giá trị lớn nhất của hàm số là max[1;2]f(x)=f(0)=f(2)=1.

+ Giá trị nhỏ nhất của hàm số là min[1;2]f(x)=f(1)=2.

b) f(x)=3x24x,f(x)=03x24x=0[x=0x=43

Vậy x=0,x=43 thì f(x)=0.

c) Ta có:f(0)=1;f(43)=(43)32.(43)2+1=527;f(1)=(1)32.(1)2+1=2;

f(2)=232.22+1=1

Do đó, số nhỏ nhất trong các giá trị này là 2, số lớn nhất trong các giá trị này là 1.

Ta thấy: max[1;2]f(x)=1, min[1;2]f(x)=2.

Xem thêm các bài giải sách giáo khoa Toán 12 bộ sách Kết nối tri thức hay, chi tiết khác:

Giải Toán 12 trang 15 Tập 1

Giải Toán 12 trang 17 Tập 1

Giải Toán 12 trang 18 Tập 1

Giải Toán 12 trang 19 Tập 1

1 191 08/06/2024


Xem thêm các chương trình khác: