Giải SBT Toán 10 trang 65 Tập 1 Kết nối tri thức
Với Giải SBT Toán 10 trang 65 Tập 1 trong Bài 11: Tích vô hướng của hai vectơ Toán lớp 10 Tập 1 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Toán 10 trang 65.
Giải SBT Toán 10 trang 65 Tập 1 Kết nối tri thức
Bài 4.29 trang 65 SBT Toán 10 Tập 1:
Cho tam giác đều ABC có độ dài các cạnh bằng 1.
a) Gọi M là trung điểm của BC. Tính tích vô hướng của các cặp vectơ và , và
b) Gọi N là điểm đối xứng với B qua C. Tính tích vô hướng
c) Lấy điểm P thuộc đoạn AN sao cho AP = 3PN. Hãy biểu thị các vectơ theo hai vectơ và Tính độ dài đoạn MP.
Lời giải:
a) Tam giác ABC đều có M là trung điểm của BC nên đường trung tuyến AM đồng thời là đường phân giác và đường cao.
Gọi Ax là tia đối của tia AM, tia Ay là tia đối của tia AB.
Do đó
Khi đó ta có:
Xét tam giác BAM vuông tại M, theo định lí Pythagoras ta có:
Vậy và
b) • Vì M là trung điểm của BC nên
• N đối xứng với B qua C nên C là trung điểm của BN
Khi đó
Mà
Do đó
Vậy
c) • Vì P thuộc đoạn thẳng AN thỏa mãn AP = 3PN
• Ta có:
Vậy và
Bài 4.30 trang 65 SBT Toán 10 Tập 1:
Cho hình chữ nhật ABCD có AB = 1, Gọi M là trung điểm của AD.
a) Chứng minh rằng các đường thẳng AC và BM vuông góc với nhau.
b) Gọi H là giao điểm của AC, BM. Gọi N là trung điểm của AH và P là trung điểm của CD. Chứng minh rằng tam giác NBP là một tam giác vuông.
Lời giải:
a) Đặt khi đó và
Vì AB ⊥ AD nên
ABCD là hình chữ nhật nên cũng là hình bình hành nên ta có:
(quy tắc hình bình hành)
M là trung điểm của AD nên
Suy ra
Khi đó
Do đó
Þ AC ⊥ BM.
b) • Xét tam giác ABC vuông tại C, theo định lí Pythagore ta có:
AC2 = AB2 + BC2 = 1 + = 3
Theo hệ thức lượng trong tam giác vuông ta có:
AB2 = AH.AC
Khi đó và
Ta có (quy tắc ba điiểm)
Vì N là trung điểm của AH nên
• Có N là trung điểm của HA và P là trung điểm của CD, theo kết quả bài 4.12, trang 58, Sách giáo khoa Toán 10, tập một, ta có:
Khi đó
Do đó
NB ⊥ NP.
Bài 4.31 trang 65 SBT Toán 10 Tập 1:
Cho tam giác ABC có Dựng ra phía ngoài tam giác hai tam giác vuông cân đỉnh A là ABD và ACE. Gọi M, N, P theo thứ tự là trung điểm BC, BD, CE. Chứng minh rằng:
a) AM vuông góc với DE;
b) BE vuông góc với CD;
c) Tam giác MNP là một tam giác vuông cân.
Lời giải:
a) +) Vì M là trung điểm của BC nên
+) Theo quy tắc ba điểm ta có:
Mà AB ⊥ AD nên
Và AC ⊥ AE nên
Do đó
Ta có:
•
Và
• AB = AD (do ∆ABD vuông cân tại A)
Và AC = AE (do ∆ACE vuông cân tại A)
•
Và
Do đó
b) Ta có:
Ta có:
•
Và
• AB = AD và AC = AE
c) Ta có:
BE = CD (1)
Xét tam giác BCD có M, N lần lượt là trung điểm của BC, BD
Nên MN là đường trung bình của ∆BCD
và MN // CD (2)
Chứng minh tương tự ta cũng có:
MP là đường trung bình của ∆BCE
và MP // BE (3)
Từ (1), (2) và (3) suy ra MN = MP.
Vì BE ⊥ CD (câu b), MN // CD và MP // BE
Nên MN ⊥ MP
Tam giác MNP có MN = MP và
Suy ra tam giác MNP là tam giác vuông cân tại M.
Bài 4.32 trang 65 SBT Toán 10 Tập 1:
Cho hai vectơ và thoả mãn và
a) Tính tích vô hướng
b) Tính số đo của góc giữa hai vectơ và
Lời giải:
Gọi ba điểm A, B, C sao cho
Khi đó
Và AB = 6, BC = 8 và AC = 10.
Xét tam giác ABC có:
• AB2 + BC2 = 62 + 82 =100
AC2 = 102 = 100
AB2 + BC2 = AC2
Do đó tam giác ABC vuông tại B (định lí Pythagore đảo)
•
a) Ta có
Vậy
b)
Vậy
Bài 4.33 trang 65 SBT Toán 10 Tập 1:
Cho tam giác ABC không cân. Gọi D, E, F theo thứ tự là chân các đường cao kẻ từ A, B, C; gọi M, N, P tương ứng là trung điềm các cạnh BC, CA, AB. Chứng minh rằng
Lời giải:
Gọi H và O là tâm đường tròn ngoại tiếp tam giác ABC.
• Vì D, M lần lượt là hình chiếu của H và O lên BC, nên là hình chiếu của trên giá của
Theo định lí hình chiếu (được giới thiệu ở phần Nhận xét của Ví dụ 2, trang 62, Sách Bài tập Toán 10, tập một) ta có:
Chứng minh tương tự ta cũng có:
Từ (1), (2) và (3) ta có:
= 0
Vậy
Bài 4.34 trang 65 SBT Toán 10 Tập 1:
Trong mặt phẳng toạ độ Oxy cho hai điểm A(2; 1) và B(4; 3).
a) Tìm toạ độ của điểm C thuộc trục hoành sao cho tam giác ABC vuông tại A. Tính chu vi và diện tích của tam giác ABC.
b) Tìm toạ độ của điểm D sao cho tam giác ABD vuông cân tại A.
Lời giải:
a) Vì tam giác ABC vuông tại A nên AB ⊥ AC hay
Do đó
Giả sử C(x; 0) là điểm thuộc trục hoành.
Với A(2; 1), B(4; 3) và C(x; 0) ta có:
và
Khi đó Û 2(x – 2) + 2(–1) = 0
2x – 4 – 2 = 0
2x = 6
x = 3
Vậy C(3; 0).
Ta có:
(theo định lí Pythagore)
Khi đó chu vi tam giác ABC là:
AB + AC + BC = (đơn vị độ dài)
Diện tích tam giác ABC là:
(đơn vị diện tích)
b) Tam giác ABD vuông cân tại A nên AB ⊥ AD và AB = AD
• Với AB ⊥ AD ta có
Mà (theo câu a)
Nên cùng phương với
Gọi D(a; b) là tọa độ điểm D cần tìm.
Mà
Do đó cùng phương với khi và chỉ khi:
Û a – 2 = 1 – b
b – 1 = 2 – a (4)
• Với AB = AD ta có AB2 = AD2
8 = (a – 2)2 + (2 – a)2 (do b – 1 = 2 – a)
8 = 2.(a – 2)2
(a – 2)2 = 4
Với a = 4 thì b – 1 = 2 – 4 b = –1 ta có điểm D1(4; –1).
Với a = 0 thì b – 1 = 2 – 0 b = 3 ta có điểm D2(0; 3).
Vậy có hai điểm D thỏa mãn yêu cầu đề bài là D1(4; –1) và D2(0; 3).
Bài 4.35 trang 65 SBT Toán 10 Tập 1:
Trong mặt phẳng toạ độ Oxy cho hai điểm A(1; 4) và C(9; 2) là hai đỉnh của hình vuông ABCD. Tìm toạ độ các đỉnh B, D, biết rằng tung độ của B là một số âm.
Lời giải:
Gọi I là giao điểm của AC và BD
Vì ABCD là hình vuông nên ta có: I là trung điểm của AC; AC = BD và AC ⊥ BD tại I.
• I là trung điểm của AC nên:
Þ I(5; 3)
Giả sử B(x; y) (y < 0) và D(a; b)
Vì I là trung điểm của BD nên ta có:
D(10 – x; 6 – y)
Với A(1; 4); C(9; 2); B(x; y) và D(10 – x; 6 – y) ta có:
và
• AC ⊥ BD
8.(10 – 2x) + (–2).(6 – 2y) = 0
80 – 16x – 12 + 4y = 0
4y = 16x – 68
y = 4x – 17 (với y < 0)
• AC = BD AC2 = BD2
82 + (–2)2 = (10 – 2x)2 + (6 – 2y)2
64 + 4 = (10 – 2x)2 + [6 – 2(4x – 17)]2
(10 – 2x)2 + (6 – 8x + 34)2 = 68
(10 – 2x)2 + (40 – 8x)2 = 68
4.(x – 5)2 + 64.(x – 5)2 = 68
(x – 5)2 = 1
Với x = 6 ta có y = 4.6 – 17 = 7 (không thỏa mãn y < 0)
Với x = 4 ta có y = 4.4 – 17 = –1 (thỏa mãn y < 0)
Khi đó ta có điểm B(4; –1)
Mà D(10 – x; 6 – y) nên D(6; 7).
Vậy B(4; –1) và D(6; 7).
Xem thêm lời giải sách bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Giải SBT Toán 10 trang 66 Tập 1
Xem thêm lời giải sách bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Bài 8: Tổng và hiệu của hai vectơ
Bài 9: Tích của một vectơ với một số
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Soạn văn lớp 10 (ngắn nhất) – Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn lớp 10 - KNTT
- Bố cục tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Văn mẫu lớp 10 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 10 – Kết nối tri thức
- Giải sgk Tiếng Anh 10 Global Success – Kết nối tri thức
- Giải sbt Tiếng Anh 10 Global Success – Kết nối tri thức
- Ngữ pháp Tiếng Anh 10 Global success
- Bài tập Tiếng Anh 10 Global success theo Unit có đáp án
- Trọn bộ Từ vựng Tiếng Anh 10 Global success đầy đủ nhất
- Giải sgk Vật lí 10 – Kết nối tri thức
- Giải sbt Vật lí 10 – Kết nối tri thức
- Giải Chuyên đề Vật lí 10 – Kết nối tri thức
- Lý thuyết Vật lí 10 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 10 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 10 – Kết nối tri thức
- Lý thuyết Hóa học 10 – Kết nối tri thức
- Giải sbt Hóa học 10 – Kết nối tri thức
- Giải Chuyên đề Hóa học 10 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 10 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 10 – Kết nối tri thức
- Giải sbt Sinh học 10 – Kết nối tri thức
- Lý thuyết Sinh học 10 – Kết nối tri thức
- Giải Chuyên đề Sinh học 10 – Kết nối tri thức
- Giải sgk Lịch sử 10 – Kết nối tri thức
- Giải sbt Lịch sử 10 – Kết nối tri thức
- Giải Chuyên đề Lịch sử 10 – Kết nối tri thức
- Lý thuyết Lịch sử 10 - Kết nối tri thức
- Giải sgk Địa lí 10 – Kết nối tri thức
- Lý thuyết Địa Lí 10 – Kết nối tri thức
- Giải sbt Địa lí 10 – Kết nối tri thức
- Giải Chuyên đề Địa lí 10 – Kết nối tri thức
- Giải sgk Công nghệ 10 – Kết nối tri thức
- Lý thuyết Công nghệ 10 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải Chuyên đề Kinh tế và pháp luật 10 – Kết nối tri thức
- Lý thuyết KTPL 10 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sbt Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sgk Tin học 10 – Kết nối tri thức
- Lý thuyết Tin học 10 – Kết nối tri thức
- Giải sbt Tin học 10 – Kết nối tri thức
- Giải Chuyên đề Tin học 10 – Kết nối tri thức
- Giải sgk Giáo dục thể chất 10 – Kết nối tri thức