Bài 6.40 trang 26 Toán 11 Tập 2 | Kết nối tri thức Giải Toán lớp 11

Lời giải Bài 6.40 trang 26 Toán 11 Tập 2 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 343 26/11/2023


Giải Toán 11 Bài tập cuối chương 6 trang 25

Bài 6.40 trang 26 Toán 11 Tập 2: Vào năm 1938, nhà vật lí Frank Benford đã đưa ra một phương pháp để xác định xem một bộ số đã được chọn ngẫu nhiên hay đã được chọn theo cách thủ công. Nếu bộ số này không được chọn ngẫu nhiên thì công thức Benford sau sẽ được dùng ước tính xác suất P để chữ số d là chữ số đầu tiên của bộ số đó: P=logd+1d. (Theo F.Benford, The Law of Anomalous Numbers, Proc. Am. Philos. Soc. 78 (1938), 551 – 572).

Chẳng hạn, xác suất để chữ số đầu tiên là 9 bằng khoảng 4,6% (thay d = 9 trong công thức Benford để tính P).

a) Viết công thức tìm chữ số d nếu cho trước xác suất P.

b) Tìm chữ số có xác suất bằng 9,7% được chọn.

c) Tính xác suất để chữ số đầu tiên là 1.

Lời giải:

a) Ta có P=logd+1d=log1+1d, suy ra 1+1d=10P1d=10P1d=110P1.

b) Vì chữ số có xác suất bằng 9,7% nên P = 9,7% = 0,097, khi đó

d=1100,09714.

Vậy chữ số có xác suất bằng 9,7% được chọn là chữ số 4.

c) Chữ số đầu tiên là 1, tức là d = 1, khi đó ta có P=log1+11=log20,301=30,1%.

Vậy xác suất để chữ số đầu tiên là 1 bằng khoảng 30,1%.

1 343 26/11/2023


Xem thêm các chương trình khác: