Giải SBT Toán 10 trang 19 Tập 2 Kết nối tri thức

Với Giải SBT Toán 10 trang 19 Tập 2 trong Bài 17: Dấu của tam thức bậc hai Toán lớp 10 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Toán 10 trang 19.

1 192 09/12/2022


Giải SBT Toán 10 trang 19 Tập 2 Kết nối tri thức

Bài 6.27 trang 19 SBT Toán 10 Tập 2: Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh rằng:

b2x2 – (b2 + c2 – a2)x + c2 > 0, x ℝ.

Lời giải:

Vì a, b, c là độ dài ba cạnh của một tam giác nên a, b, c > 0.

Coi f(x) = b2x2 – (b2 + c2 – a2)x + c2  là một tam thức bậc hai ẩn x dạng f(x) = Ax2 + Bx + C.

Xét phương trình bậc hai b2x2 – (b2 + c2 – a2)x + c2  = 0 có:

A = b2 > 0 (vì b là độ dài cạnh của tam giác)

∆ = B2 – 4AC = [– (b2 + c2 – a2)]2 – 4.b2.c2

= (b2 + c2 – a2)2 – (2bc)2  

= (b2 + c2 – a2 – 2bc)(b2 + c2 – a2  + 2bc)

= [(b – c)2 – a2][(b + c)2 – a2]

= (b – c – a)(b – c + a)(b + c – a)(b + c + a)

Vì a, b, c là ba cạnh của tam giác nên ta có:

a + b – c > 0

b + c – a > 0

b + c + a > 0

b – c – a = b – (c + a) < 0

Do đó ∆ < 0.

Vậy b2x2 – (b2 + c2 – a2)x + c2 > 0, x ℝ (điều cần phải chứng minh).

Xem thêm lời giải sách bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác: 

Giải SBT Toán 10 trang 18 Tập 2

1 192 09/12/2022


Xem thêm các chương trình khác: