Chuyên đề Toán 10 Bài 1 (Cánh diều): Phương pháp quy nạp toán học
Với giải bài tập Chuyên đề Toán 10 Bài 1: Phương pháp quy nạp toán học sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Chuyên đề học tập Toán 10 CD Bài 1.
Giải bài tập Chuyên đề Toán 10 Bài 1: Phương pháp quy nạp toán học
Giải bài tập trang 23, 25 Chuyên đề Toán 10 Bài 1
Hoạt động trang 23 Chuyên đề Toán 10:
Xét mệnh đề chứa biến P(n) : "1 + 3 + 5 + ... + (2n – 1) = n2" với n là số nguyên dương.
a) Chứng tỏ rằng P(1) là mệnh đề đúng.
Lời giải:
a) Ta có P(1): "1 = 12". Mệnh đề này đúng vì 12 = 1.
b) Với k là một số nguyên dương tuỳ ý mà P(k) là mệnh đề đúng thì 1 + 3 + 5 + ... + (2k – 1) = k2.
c) Khi P(k) là mệnh đề đúng. Ta có:
P(k+1) = 1 + 3 + 5 + ... + (2k – 1) + [2(k+1) – 1] = P(k) + [2(k+1) – 1]
= k2 + [2(k+1) – 1] = k2 + (2k + 2 – 1) = k2 + 2k + 1 = (k+1)2
Vậy P(k+1) cũng là mệnh đề đúng.
Luyện tập 1 trang 25 Chuyên đề Toán 10:
Chứng minh rằng với mọi n ℕ* ta có:
Lời giải:
a)
+) Khi n = 1, ta có:
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là:
Thật vậy, theo giả thiết quy nạp ta có:
Khi đó:
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*.
b)
+) Khi n = 2, ta có:
Vậy mệnh đề đúng với n = 2.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là:
Thật vậy, theo giả thiết quy nạp ta có:
Khi đó:
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*.
Giải bài tập trang 26 Chuyên đề Toán 10 Bài 1
Luyện tập 2 trang 26 Chuyên đề Toán 10:
Chứng minh với mọi n ℕ*,, lần lượt viết được ở dạng , trong đó an, bn là các số nguyên dương.
Lời giải:
+) Khi n = 1, ta có:
a1 = 1, b1 = 1.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: viết được dưới dạng trong đó ak + 1, bk + 1 là các số nguyên dương.
Thật vậy, theo giả thiết quy nạp ta có:
= với ak, bk là các số nguyên dương.
Khi đó:
Vì ak, bk là các số nguyên dương nên ak + 2bk và ak + bk cũng là các số nguyên dương.
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*.
+) Theo chứng minh trên ta có:
Với mọi n ℕ* thì = với an, bn là các số nguyên dương.
Chứng minh tương tự ta được:
Với mọi n ℕ* thì = với cn, dn là các số nguyên dương.
Giờ ta chứng minh an = cn và bn = dn với mọi n ℕ*.
Cách 1:
Xét mệnh đề P(n): an = cn và bn = dn với mọi n ℕ*.
+) Khi n = 1, ta có:
a1 = 1, b1 = 1.
c1 = 1, d1 = 1.
Vậy a1 = c1, b1 = d1.
Vậy mệnh đề P(n) đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề P(n) cũng đúng với k + 1, tức là: ak + 1 = ck + 1 và bk + 1 = dk + 1.
Thật vậy, theo giả thiết quy nạp ta có: ak = ck và bk = dk (1).
Mặt khác:
ak + 1 = ak + 2bk, bk + 1 = ak + bk (2).
nên ck + 1 = ck + 2dk, dk + 1 = ck + dk (3)
Từ (1), (2) và (3) ta suy ra ak + 1 = ck + 1 và bk + 1 = dk + 1.
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*.
Vậy bài toán đã được chứng minh.
Cách 2:
Ta có:
Từ (2) ta suy ra với k > 0 (vì an, bn, cn, dn là các số nguyên dương)
Thế vào (1) ta được:
an = cn và bn = dn.
Vậy ta có điều phải chứng minh.
Luyện tập 3 trang 26 Chuyên đề Toán 10:
Chứng minh 16n – 15n – 1 chia hết cho 225 với mọi n ℕ*.
Lời giải:
+) Khi n = 1, ta có: 161 – 15n – 1 = 0 ⁝ 225.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: 16k + 1 – 15(k + 1) – 1 chia hết cho 225.
Thật vậy, theo giả thiết quy nạp ta có: 16k – 15k – 1 chia hết cho 225.
Khi đó:
16k + 1 – 15(k + 1) – 1
= 16 . 16k – 15k – 16
= 16 . 16k – (240k – 225k) – 16
= 16 . 16k – 240k + 225k – 16
= 16 . 16k – 240k – 16 + 225k
= 16 (16k – 15k – 1) + 225k
Vì (16k – 15k – 1) và 225k đều chia hết cho 225 nên 16 (16k – 15k – 1) + 225k ⁝ 225, do đó 16k + 1 – 15(k + 1) – 1 ⁝ 225.
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*.
Giải bài tập trang 29 Chuyên đề Toán 10 Bài 1
Bài 1 trang 29 Chuyên đề Toán 10:
Cho Sn = 1 + 2 + 22 +... + 2n và Tn = 2n + 1 – 1, với n ℕ*.
a) So sánh S1 và T1; S2 và T2; S3 và T3.
b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.
Lời giải:
a) S1 = 1 + 21 = 3, S2 = 1 + 2 + 22 = 7, S3 = 1 + 2 + 22 + 23 = 15.
T1 = 21 + 1 – 1 = 3, T2 = 22 + 1 – 1 = 7, T3 = 23 + 1 – 1 = 15.
Vậy S1 = T1; S2 = T2; S3 = T3.
b) Ta dự đoán Sn = Tn với n ℕ*.
+) Khi n = 1, ta có: S1 = T1.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: Sk + 1 = Tk + 1.
Thật vậy, theo giả thiết quy nạp ta có: Sk = Tk.
Khi đó:
Sk + 1 = 1 + 2 + 22 +... + 2k + 2k + 1
= Sk + 2k + 1
= Tk + 2k + 1
= (2k + 1 – 1) + 2k + 1
= 2 . 2k + 1 – 1
= 2k + 2 – 1
= 2(k + 1) + 1 – 1
=Tk + 1.
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*. Vậy Sn = Tn = 2n + 1 – 1 với n ℕ*.
Bài 2 trang 29 Chuyên đề Toán 10:
a) So sánh S1 và T1; S2 và T2; S3 và T3.
b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.
Lời giải:
a)
Vậy S1 = T1; S2 = T2; S3 = T3.
b) Ta dự đoán Sn = Tn với n ℕ*.
+) Khi n = 1, ta có: S1 = T1.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: Sk + 1 = Tk + 1.
Thật vậy, theo giả thiết quy nạp ta có: Sk = Tk.
Khi đó:
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*. Vậy Sn = Tn = với n ℕ*.
Bài 3 trang 29 Chuyên đề Toán 10:
b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.
Lời giải:
a)
b) Ta dự đoán
+) Khi n = 1, ta có:
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là:
Thật vậy, theo giả thiết quy nạp ta có:
Khi đó:
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*. Vậy với n ℕ*.
Bài 4 trang 29 Chuyên đề Toán 10:
Cho q là số thực khác 1. Chứng minh: 1 + q + q2 +... + qn – 1 = với n ℕ*.
Lời giải:
+) Khi n = 1, ta có: 1 =
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: 1 + q + q2 +... + qk – 1 + q(k + 1) – 1 =
Thật vậy, theo giả thiết quy nạp ta có: 1 + q + q2 +... + qk – 1 =
Khi đó:
1 + q + q2 +... + qk – 1 + q(k + 1) – 1
= (1 + q + q2 +... + qk – 1) + q(k + 1) – 1
= + q(k + 1) – 1
= + qk
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*.
Bài 5 trang 29 Chuyên đề Toán 10:
Chứng minh với mọi n ℕ*, ta có:
a) 4n + 15n – 1 chia hết cho 9;
Lời giải:
a)
+) Khi n = 1, ta có: 41 + 15 . 1 – 1 = 18 ⁝ 9.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: 4k + 1 + 15(k+1) – 1 ⁝ 9.
Thật vậy, theo giả thiết quy nạp ta có: 4k + 15k – 1 ⁝ 9.
Khi đó:
4k + 1 + 15(k+1) – 1
= 4 . 4k + 15k + 14
= 4. 4k + (60k – 45k) + (–4 + 18)
= (4 . 4k + 60k – 4) – 45k + 18
= 4 . (4k + 15k – 1) – 45k + 18
Vì 4k + 15k – 1, 45k và 18 đều chia hết cho 9 nên 4 . (4k + 15k – 1) – 45k + 18 ⁝ 9, do đó 4k + 1 + 15(k+1) – 1 ⁝ 9.
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*.
b)
+) Khi n = 1, ta có: 131 – 1 = 12 ⁝ 6.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: 13k + 1 – 1 ⁝ 6.
Thật vậy, theo giả thiết quy nạp ta có: 13k – 1 ⁝ 6.
Khi đó:
13k + 1 – 1
= 13 . 13k – 1
= 13 . 13k – 13 + 12
= 13 . (13k – 1) + 12
Vì 13k – 1 và 12 đều chia hết cho 6 nên 13 . (13k – 1) + 12 ⁝ 6, do đó 13k + 1 – 1 ⁝ 6.
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*.
Bài 6 trang 29 Chuyên đề Toán 10:
Chứng minh nn > (n + 1)n – 1 với n ℕ*, n ≥ 2.
Lời giải:
+) Khi n = 2, ta có: 22 > (2 + 1)2 – 1 4 > 3.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý (k ≥ 2) mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: (k + 1)k + 1 > [(k+1) + 1](k + 1) – 1.
Thật vậy, theo giả thiết quy nạp ta có: kk > (k + 1)k – 1.
Suy ra: kk . (k + 1)k + 1 > (k + 1)k – 1 . (k + 1)k + 1
kk . (k + 1)k + 1 > (k + 1)2k
kk . (k + 1)k + 1 > [(k + 1)2]k
kk . (k + 1)k + 1 > (k2 + 2k + 1)k > (k2 + 2k)k = [k(k + 2)]k = kk . (k + 2)k
(k + 1)k + 1 > (k + 2)k = (k + 2)(k + 1) – 1
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề P(n) đúng với mọi n ℕ*, n ≥ 2.
Bài 7 trang 29 Chuyên đề Toán 10:
Chứng minh an – bn = (a – b)(an – 1 + an – 2b + ... + abn –2 + bn – 1) với n ℕ*.
Lời giải:
+) Khi n = 1, ta có: a1 – b1 = a – b.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là:
ak + 1 – bk + 1 = (a – b)[a(k + 1) – 1 + a(k + 1) – 2b + ... + ab(k + 1) –2 + b(k + 1) – 1]
Thật vậy, theo giả thiết quy nạp ta có:
ak – bk = (a – b)(ak – 1 + ak – 2b + ... + abk –2 + bk – 1)
Khi đó:
ak + 1 – bk + 1
= a . ak – b . bk
= a . ak – a . bk + a . bk – b . bk
= a . (ak – bk) + bk . (a – b)
= a . (a – b)(ak – 1 + ak – 2b + ... + abk –2 + bk – 1) + bk . (a – b)
= (a – b) . a . (ak – 1 + ak – 2b + ... + abk –2 + bk – 1) + (a – b) . bk
= (a – b)(a . ak – 1 + a . ak – 2b + ... + a . abk – 2 + a . bk – 1) + (a – b) . bk
= (a – b)[a1 + (k – 1) + a1 + (k – 2)b + ... + a2bk – 2 + a . bk – 1) + (a – b) . bk
= (a – b)[a(k + 1) – 1 + a(k + 1) – 2b + ... + a2b(k + 1) – 3 + ab(k + 1) –2] + (a – b) . b(k + 1) – 1
= (a – b)[a(k + 1) – 1 + a(k + 1) – 2b + ... + ab(k + 1) –2 + b(k + 1) – 1].
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề P(n) đúng với mọi n ℕ*.
Bài 8 trang 29 Chuyên đề Toán 10:
Cho tam giác đều màu xanh (Hình thứ nhất).
a) Nêu quy luật chọn tam giác đều màu trắng ở Hình thứ hai.
b) Nêu quy luật chọn các tam giác đều màu trắng ở Hình thứ ba.
d) Tinh số tam giác đều màu xanh lần lượt trong các Hình thứ nhất, Hình thú hai, Hình thứ ba.
Lời giải:
a) Tam giác đều màu trắng ở Hình thứ hai có đỉnh là trung điểm các cạnh của tam giác đều màu xanh ở hình thứ nhất.
b) Giữ nguyên tam giác đều màu trắng ở Hình thứ hai, với mỗi tam giác đều màu xanh ở Hình thứ hai, ta lại chọn các tam giác đều màu trắng như cách ở Hình thứ nhất.
c) Giữ nguyên các tam giác đều màu trắng ở Hình thứ ba, với mỗi tam giác đều màu xanh ở Hình thứ ba, ta lại chọn các tam giác đều màu trắng như cách ở Hình thứ nhất.
Như vậy, ta có quy luật chọn các tam giác đều màu trắng ở hình thứ n:
Giữ nguyên các tam giác đều màu trắng ở Hình thứ n – 1, với mỗi tam giác đều màu xanh ở Hình thứ n – 1, ta lại chọn các tam giác đều màu trắng như cách ở Hình thứ nhất.
d) Số tam giác đều màu xanh ở Hình thứ nhất là: 1.
Số tam giác đều màu xanh ở Hình thứ hai là: 3.
Số tam giác đều màu xanh ở Hình thứ ba là: 9.
e) Dự đoán số tam giác đều màu xanh ở Hình thứ n là: 3n – 1.
Xét mệnh đề P(n): "Số tam giác đều màu xanh ở Hình thứ n là 3n – 1 với n ℕ*".
Chứng minh:
+) Khi n = 1, ta có: Số tam giác đều màu xanh ở Hình thứ nhất là: 1.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là:
Số tam giác đều màu xanh ở Hình thứ (k + 1) là 3(k + 1) –1.
Thật vậy, theo giả thiết quy nạp ta có:
Số tam giác đều màu xanh ở Hình thứ k là 3k –1.
Vì với cách chọn như trên, mỗi tam giác đều màu xanh sẽ tạo ta 3 tam giác đều màu xanh mới ở hình tiếp theo nên từ 3k – 1 tam giác đều màu xanh ở Hình thứ k sẽ cho ta 3 . 3k – 1 = 3k = 3(k + 1) – 1 tam giác đều màu xanh ở Hình thứ (k + 1).
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề P(n) đúng với mọi n ℕ*.
Giải bài tập trang 30 Chuyên đề Toán 10 Bài 1
Bài 9 trang 30 Chuyên đề Toán 10:
Lời giải:
a) Số chấm tăng thêm sau mỗi lượt xếp (kể từ lượt đầu tiên) là các số lẻ liên tiếp bắt đầu từ 1.
b) Vì ở hình vuông thứ n có mỗi cạnh chứa n chấm nên tổng số chấm là n2.
Mặt khác, theo cách sắp xếp trên ta lại có tổng số chấm là: 1 + 3 + 5 + ... + (2n – 1).
Như vậy ta sẽ chứng minh mệnh đề
P(n): "1 + 3 + 5 + ... + (2n – 1) = n2 với mọi n ℕ*".
+) Khi n = 1, ta có: 1 = 12.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: 1 + 3 + 5 + ... + (2k – 1) + [2(k+1) – 1] = (k + 1)2.
Thật vậy, theo giả thiết quy nạp ta có: 1 + 3 + 5 + ... + (2k – 1) = k2.
Khi đó:
1 + 3 + 5 + ... + (2k – 1) + [2(k+1) – 1]
= [1 + 3 + 5 + ... + (2k – 1)] + [2(k+1) – 1]
= k2 + [2(k+1) – 1]
= k2 + (2k + 2 –1)
= k2 + 2k + 1
= (k + 1)2.
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề P(n) đúng với mọi n ℕ*.
Bài 10 trang 30 Chuyên đề Toán 10:
Lời giải:
Xét mệnh đề P(x): "Số tiền cả vốn lẫn lãi mà cô Hạnh có được sau n (năm) là (đồng) (n ℕ*)".
+) Khi n = 1:
Số tiền lãi người đó nhận được là: A . r% = (đồng).
Số tiền nhận được (bao gồm cả vốn lẫn lãi) là:
A +
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: Số tiền cả vốn lẫn lãi mà cô Hạnh có được sau (k +1) (năm) là (đồng).
Thật vậy, theo giả thiết quy nạp ta có:
Số tiền cả vốn lẫn lãi mà cô Hạnh có được sau k (năm) là:
(đồng).
Vì cô Hạnh không rút tiền ra và lại gửi thêm A (đồng) nữa nên:
– Số tiền vốn của cô Hạnh sau (k + 1) năm là: Tk + A (đồng).
– Số tiền lãi cô Hạnh nhận được sau (k + 1) (năm) là:
(Tk + A) . r% (đồng).
– Số tiền cả vốn lẫn lãi mà cô Hạnh có được sau (k + 1) (năm) là:
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*. Từ đó ta có điều phải chứng minh.
Bài 11 trang 30 Chuyên đề Toán 10:
Lời giải:
Xét mệnh đề P(x): "Số tiền nhận được (bao gồm cả vốn lẫn lãi) sau x (kì hạn) gửi là (đồng) (x ℕ*)".
Vì một năm có m kì hạn nên lãi suất mỗi kì hạn là
+) Khi x = 1:
Số tiền lãi người đó nhận được là: A . (đồng).
Số tiền nhận được (bao gồm cả vốn lẫn lãi) là:
A + A . = (đồng)
Vậy mệnh đề đúng với x = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: Số tiền nhận được (bao gồm cả vốn lẫn lãi) sau (k + 1) (kì hạn) gửi là (đồng).
Thật vậy, theo giả thiết quy nạp ta có:
Số tiền nhận được (bao gồm cả vốn lẫn lãi) sau k (kì hạn) gửi là (đồng).
Vì sau mỗi kì hạn, số tiển lãi sẽ được nhập vào vốn ban đầu nên số tiền lại ở kì hạn thứ (k + 1) là: (đồng).
Suy ra số tiền nhận được (bao gồm cả vốn lẫn lãi) là:
Vậy mệnh đề cũng đúng với x = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi x ℕ*.
Sau n (năm) thì số kì hạn người đó đã gửi là: m . n (kì hạn).
Do đó, số tiền nhận được (bao gồm cả vốn lẫn lãi) sau n (năm) gửi là:
(đồng).
Xem thêm lời giải bài tập Chuyên đề Toán lớp 10 Cánh diều hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Soạn văn lớp 10 (ngắn nhất) – Cánh Diều
- Giải sbt Ngữ văn lớp 10 – Cánh Diều
- Văn mẫu lớp 10 – Cánh Diều
- Giải Chuyên đề học tập Ngữ văn 10 – Cánh diều
- Giải sgk Tiếng Anh 10 – Explore new worlds
- Giải sgk Tiếng Anh 10 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 10 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 i-learn Smart World
- Giải sbt Tiếng Anh 10 - iLearn Smart World
- Giải sgk Vật lí 10 – Cánh Diều
- Giải sbt Vật lí 10 – Cánh Diều
- Lý thuyết Vật lí 10 – Cánh Diều
- Giải Chuyên đề Vật lí 10 – Cánh Diều
- Giải sgk Hóa học 10 – Cánh Diều
- Lý thuyết Hóa học 10 – Cánh Diều
- Giải sbt Hóa học 10 – Cánh Diều
- Giải Chuyên đề Hóa học 10 – Cánh Diều
- Giải sgk Sinh học 10 – Cánh Diều
- Giải sbt Sinh học 10 – Cánh Diều
- Lý thuyết Sinh học 10 – Cánh Diều
- Giải Chuyên đề Sinh học 10 – Cánh diều
- Giải sgk Lịch sử 10 – Cánh Diều
- Giải sbt Lịch sử 10 – Cánh Diều
- Giải Chuyên đề Lịch sử 10 – Cánh Diều
- Lý thuyết Lịch sử 10 – Cánh diều
- Giải sgk Địa lí 10 – Cánh Diều
- Lý thuyết Địa Lí 10 – Cánh Diều
- Giải sbt Địa lí 10 – Cánh Diều
- Giải Chuyên đề Địa lí 10 – Cánh Diều
- Lý thuyết Công nghệ 10 – Cánh Diều
- Giải sgk Công nghệ 10 – Cánh Diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải Chuyên đề Kinh tế pháp luật 10 – Cánh diều
- Lý thuyết KTPL 10 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 10 – Cánh Diều
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Cánh diều
- Giải sbt Giáo dục quốc phòng - an ninh 10 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sgk Tin học 10 – Cánh Diều
- Giải sbt Tin học 10 – Cánh Diều
- Giải Chuyên đề Tin học 10 – Cánh diều
- Lý thuyết Tin học 10 - Cánh diều
- Giải sgk Giáo dục thể chất 10 – Cánh Diều